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Abstract— Two methods for interpolating the distanced bigram
language model are examined which take into account pairs
of words that appear at varying distances within a context.
The language models under study yield a lower perplexity
than the baseline bigram model. A word clustering algorithm
based on mutual information with robust estimates of the mean
vector and the covariance matrix is employed in the proposed
interpolated language model. The word clusters obtained by using
the aforementioned language model are proved more meaningful
than the word clusters derived using the baseline bigram.

I. INTRODUCTION

Statistical Language Models (LM) have been used in a wide
range of natural language processing tasks including speech
recognition [1], word clustering [2], machine translation [3],
and information retrieval [4], [5], [6].

In speech recognition systems, the � -gram language models
[1] are mainly used, particularly in large vocabulary speech
transcription tasks [7], [8]. However, since the main notion of
these models is that the probability of a word depends only
upon the last � � � words, the number of parameters in � -
gram models increases considerably as � increases, resulting
in an increase in the size of the model and the data required
for training. Therefore, low values of � , usually � � �, are
employed causing the loss of long-term context information.

This drawback has motivated further research in alternative
ways for extracting suitable long distance information. Trig-
ger language models derive trigger word pairs using mutual
information whose statistics are combined with the � -gram
statistics in a maximum entropy framework [9]. Trigger word
pairs provide long-distance information since the triggering
word and the triggered one can be separated by several words.
However, their selection is a complex issue, since different
trigger word pairs display a markedly different behavior, which
limits the potential of low frequency triggers. An extension of
the trigger concept in the latent semantic analysis (LSA) where
a more systematic framework is exploited to handle trigger pair
selection is proposed in [10]. Cache language models boost
the probability of a word or a word class seen in a long-term
window over the history [11]. In [12], distance-2 bigrams are
combined with standard bigrams and trigrams using maximum
entropy, while in [13], a pruning strategy is proposed in order
to obtain a variable-length model. In the latter approach, a full
� -gram model with a large � is successively discarded from

those � -grams having the smallest impact on the model. A
tree-based language model that uses a longer context with a
limited number of parameters is proposed in [14].

In this paper, we examine two different interpolation meth-
ods for distanced bigram models at varying distances within
a context � . The first method conducts interpolation over the
component probabilities of the models [7] whereas the second
method interpolates the full models. The latter model and the
baseline bigram are employed for word clustering using an
algorithm similar to that proposed in [2], but including now
robust estimators of the mean vector and the covariance matrix.
The effectiveness of the interpolated models is compared with
that of the baseline bigram by measuring the perplexity in
leave-one-out experiments. In addition, the validity of the word
clusters derived by employing the aforementioned language
models in the clustering algorithm is studied. The Jaccard
coefficient [15] has been computed in order to test if the
clustering is not a matter of chance but it has been created
systematically capturing a similarity inherent in the data.
Moreover, we have computed the average mutual information
between the classic bigram and the distance bigram for � � �.
The experimental results indicate that the clustering employing
robust distanced bigrams is less predictable by the clustering
obtained using the classic bigram than that based on the
distance bigram without robust estimators of the mean vector
and the covariance matrix. The experiments were conducted
on the Reuters corpus collection.

The outline of the paper is as follows. Language modeling
is described in Section II. A discounting method suitable
for the interpolated language models under study is outlined
in Section III. The word clustering approach is explained
in Section IV and experimental results are demonstrated in
Section V. Finally, conclusions are drawn in Section VI.

II. LANGUAGE MODELING

Given a sequence of � words � � ��� ��� � � � � �� a
language model estimates the a priori probability � ��� �
� ���� ��� � � � � �� �. In the following, the � -gram, the dis-
tanced bigram, and the interpolation of language models are
reviewed briefly.



A. The � -Gram Model

In this traditional stochastic language model, the current
word is predicted based on the preceding word (bigram) or
the preceding � � � words (� -gram) expecting that most of
the relevant syntactic information lies in the immediate past.
Its a priori probability � ��� is expressed using conditional
probabilities by
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For simplicity reasons, by invoking Markov chain
assumptions, � ������� � � � � ����� is approximated by
� ����������� ���� ����� with � � �� � or � at the expense
of preserving the syntactic and semantic information from
the more distant words.

B. The Distanced Bigram Model

In an attempt to reduce the number of free parameters of
the � -Gram model and to maintain the modeling capacity,
long-distance bigrams are proposed in [7], [8]. In this model,
the notion of distance � is added to the bigrams of the simple
� -gram model. A word �� lies at distance � from the word
�� , when � � 	 � �. That is, when �� is the �th word before
�� . For � � �, we get the baseline bigram. The probability
����� of a word sequence in the proposed model is expressed
by
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The probability ����� ���� is expressed with the help of the
relative frequency approach as follows:

����� ���� � ������ ���� �
������ ���

�����
(3)

where ������ ��� is the number of times the word �� appears
to be the �th word before �� . Similarly, ����� is the number
of times the word �� is met in the training corpus.

C. Interpolating Language Models

When long-distanced bigrams are met in � different dis-
tances, ����� can be approximated by interpolating the
component probabilities of the models using
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where
��

��� 
� � � and � � 
� � �. The values of 
� are
estimated based on held out data by means of the Expectation
Maximization (EM) algorithm [1].

In a second approach, the interpolation is applied on the
full language models. That is, � �

������ is described by
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where
��

��� �� � � and � � �� � �. The most simple values
of �� that could be used are �� � ��� resulting in a language
model averaged over the component language models. In our
experiments, we used �� � 
�, where 
� are the weights
determined for (4).

III. ABSOLUTE DISCOUNTING

In discounting models, the relative frequencies of seen
events are discounted and the gained probability mass is
distributed over the unseen events. To succeed this, counts
that represent how many times a certain � -gram was found,
and “count-counts” which represent the number of times a
certain count has occurred have to be calculated. Let us denote
the “counts-counts” by 
�	� where 
�	� expresses the total
number of distinct joint events that occurred exactly � times
at distance �. Events with counts � � �� � are characterized as
unseen events and singleton ones,respectively and they are the
most commonly met. In the following, we briefly describe how
absolute discounting can be applied to the proposed language
models.

A. Distanced Bigram Language Model

Following similar lines to [16], it can easily be derived that
the probabilities required in the model under study can be
obtained by
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where �� is the non-integer count offset for bigrams at dis-
tance �, �� � is the total number of words in the vocabulary
and ���� ���� is a generalized distribution that serves as a
normalization constraint. As in [16], we can derive that
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Using (7) the absolute discounting model of (6) can be
expressed in an interpolated formula as follows:
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where 
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is usually approximated by

� ����.

B. Interpolated Distanced � -Gram Model

By substitution of (8) into (5), the absolute discounting
model, when an interpolation over the distanced bigram mod-
els is wanted, is expressed by
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where
��

��� �� � � and �� is given by (7).

IV. AUTOMATIC WORD CLUSTERING

A word clustering algorithm will be described subsequently
when an interpolation over the component distanced bigram
language models is employed, i.e.,
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A common assumption in most language models is that
classes of functionally equivalent words exist. Given a vocab-
ulary � of size � � �� �, let us assume that � non-overlapping
classes ��, � � �� � � � � �, can be found such that
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The following transition probabilities hold:


�� � ���
�� � �� � ��
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where ��
������ ���� can be estimated using (9).

We statistically characterize the estimate of transition prob-
ability ��

������ ��� from a given word � to all the other words
of the vocabulary, 	 � �� �� � � � � �, in the same way as esti-
mating the probability of the occurrence of the � generalized
distanced bigrams, in
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�������� repeated Bernoulli trials

[17]:
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where �
���
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denotes

the probability of having
��

�������, ���� 	 � �� �� � � � � �
occurrences of the corresponding distanced bigrams in the
training set.

In (13), since
��

��� ���
 is sufficiently large and
��

���

�������� is in the
���

��� ������ neighborhood of
��

���

������, according to De Moivre-Laplace theorem each term
in the right-hand side is approximated by a �-dimensional
Gaussian probability density function (pdf) [17]. That is,
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where the mean vector is given by
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and, to a first degree, the covariance matrix ��

 is approxi-

mated by a diagonal matrix, i.e.,
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where ����� � denotes the diagonal matrix having the indicated
arguments as elements on the main diagonal. Let us assume
that every word �� comprises a single class and it is repre-
sented by an estimated transition probability vector � � whose
elements are the estimated transition probabilities. That is, its
�th component is the transition probability from the word � �

to word ��, ����������.
The probability of the hypothesis ��� that two classes ��

and �� form a single class is given by
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where �
�
�� and ��

�� are the mean vector and covariance
matrix of the class formed by merging classes �� and �� ,
respectively. In (17), ����� denotes the determinant of a matrix
and � is the transposition operator. Classes to be merged
correspond to the hypothesis that maximizes (17).

By taking the logarithm of (17) and dropping the normal-
ization term we get the following hypothesis
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An estimate of ���� is given by
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where ���� and ��� � are the numbers of the elements that
belong to the corresponding classes. In (18), we assume that
the covariance matrix is diagonal and its ��th element is given
by
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For the mean vector (19) and the covariance matrix (20)
we perform robust M-estimation in order to weigh more the
observations that come from the typical distribution and to
weigh less the observations that come from the contaminating
distribution [18], [19].

The criterion (18) is used for determining the best pair of
classes that should be merged as in [2]. To summarize, the
clustering algorithm works as follows.

� Step 1: Each word of the vocabulary comprises a class
on its own. Thus the algorithm starts with � number of
classes.

� Step 2: The two classes that minimize (18) are merged
in a single class.

� Step 3: If the number of remaining classes equals a
predetermined number of classes �, the algorithm stops.
Otherwise a new iteration starts at Step 2.



In the described algorithm, there are approximately ����� ���
class pairs that have to be examined for merging in each
iteration �. In order to avoid the exhaustive computational
needs of the algorithm, we sort the words of the vocabulary
in decreasing order of frequency and we assign the first �	�
words to � 	 � distinct classes. At each iteration, we try to
find the class pair for which the loss in pointwise mutual
information is minimal, we perform the merging acquiring
� classes and we insert the next word of the vocabulary
in a distinct class resulting again in � 	 � classes. So at
iteration �, we assign the �� 	 ��th most probable word of
the vocabulary in a distinct class and we continue in the
same way until no vocabulary words are left. After � � �
steps the words of the vocabulary are assigned in � classes.
Using this approach at iteration � we have to investigate
���	�������� � �������� class candidates for merging [2].
If we do not stop the algorithm in � classes, but we continue
for �� � merges, we obtain a single class containing all the
vocabulary words. The order in which clusters are merged
determines a binary tree having a single cluster as root, the
vocabulary words as leaves, and the intermediate clusters as
nodes.

V. RESULTS

The following language models were implemented: the clas-
sical bigram model, the distanced bigram with � � �� � � � � �
and the two versions of the interpolated distanced bigram
model described in Section II-C. The models were tested on a
subset of the Reuters corpus that yields a vocabulary of ����
words.
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Fig. 1. Perplexity comparison between the interpolated models over (a) the
component probabilities of distanced bigram models with � � �� �� � and
(b) the distanced language models with � � �� �� �.

For the interpolation model (4), EM with a two-way cross
validation was used in order to estimate 
�. For the model
(5) the interpolation weights �� were selected to be equal
with 
�. To evaluate the model effectiveness, perplexity was
calculated holding out one document from the collection for
test document while all the remaining documents are used
in the training phase. For the bigram model with distance

values � � �� � � � � �, the perplexity slightly increased, when
the distance increased, as expected [20], [21]. However, the
interpolated models with � � �� �, when either the component
probabilities are interpolated or the full language models
are interpolated, outperformed the baseline bigram model
exhibiting a perplexity reduction of �� and ���, respectively.
It is worth mentioning that the interpolation over the whole
language models gave better perplexity results than that over
the component probabilities as depicted in Fig. 1.

Subsequently, the baseline bigram model and the language
models derived by interpolating over the distanced bigram
language models (with � � �� � and � � �� �� �) were
used for word clustering using the algorithm described in
Section IV. The clustering procedure started with a number
of classes equal to the size of vocabulary and produced at the
end ��� clusters for the first two language models and ���
clusters for the latter one.

Clusters were evaluated using the Jaccard coefficient and
the average mutual information. Let � � ���� ��� � � � � ���
be a clustering structure on the vocabulary � and � � �
�� �

�� �
�
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�
�� another partition of � . We refer to a pair of

words ��� �� � � � � � and we define the following terms:
�: number of word pairs that are in the same cluster in

both partitions
�: number of word pairs that are in the same cluster in

� but in different clusters in � �

�: number of word pairs that are in different clusters in
� but in the same cluster in � �,and

�: number of word pairs that are in different clusters in
both partitions.

The total number of pairs of objects is � � �	 �	 �	 � �
��� � ����, where � is the cardinality of � . The Jaccard
index is then given by [15]:

 �
�

�	 �	 �
� (21)

 admits values between � and �. Large values of  imply
a close agreement between the two partitions. The values of
Jaccard index between a randomly generated clustering and the
clusterings obtained using procedure described in Section IV
for the several language models under study are shown in
Table I. As can be seen, the resulting clusterings are not
created by chance, because the Jaccard index values are very
close to �.

TABLE I
JACCARD INDEX VALUES.

Language Model Jaccard Index
Classical Bigram ��������
Interpolation over the distanced bigram lan-
guage models for � � �� �

��������

Interpolation over the distanced bigram lan-
guage models for � � �� �� �

��������

Interpolation over the distanced bigram lan-
guage models for � � �� � using robust
mean estimates

�������	

The amount of information contained in each clustering
and the amount of information the one clustering predicts



about the other were also studied by estimating the entropy of
each clustering and the average mutual information between
the different clusterings, respectively. Given a clustering �
containing ! clusters (� � ���� � � � � ���), the entropy of
the clustering is

���� � �
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� ��� ���� ��� (22)

where � ��� is the probability that a word belongs to the cluster
�� of the clustering � [22]. The average mutual information
between two clusterings � and � � given the probabilities
� ���� � � �� � � � �! for clustering �, � ������ �� � �� � � � �! �

for clustering � �, and � ��� ��� for the intersection of � and
� � (� � � �) is defined as [22]:
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The variation of information � "���� ��, proposed in [23]
as a figure of merit for the assessment of clusterings, was also
estimated. � "���� �� is given by

� "���� �� � ������ ������ ��� 	 ���� ��� ������ ����
(24)

The fist term in the above equation measures how well
clustering � can be predicted from � �, while the second one
how well clustering � � can be predicted from �. The values
of terms appearing in (22)-(24) for clusterings obtained using
different language models are collected in Table II.

As it can be seen from the Table II, most clusterings predict
approximately the same information for the others. However,
the higher value of variation of information for the interpolated
distanced bigram with � � �� � when employing robust mean
estimation implies that the latter differs more from the classic
bigram than the interpolated distanced bigram with � � �� �
without the robust estimation for the mean vectors.

VI. CONCLUSIONS

In this paper, two language models based on the distance
between word pairs have been employed which differ in the
way the interpolation between models is implemented. The
experimental results indicate the ability of the interpolated
models to capture long-term word dependencies with the
additional advantage of a low number of parameters in contrast
with the classical � -gram. Our first results suggest that a more
efficient language model is obtained when the interpolation is
made at the level of the entire language models instead of
their component probabilities. The more effective interpolated
distance bigram model were used for word clustering in an
hierarchical clustering approach where robust estimators of the
mean vector and the covariance matrix were also employed.
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TABLE II
ENTROPY, AVERAGE MUTUAL INFORMATION AND VARIATION OF INFORMATION VALUES FOR CLUSTERINGS USING DIFFERENT LANGUAGE MODELS

Language model used
for clustering C

Language model used
for clustering C’

�
�� �
��� ��
����� �
�� � ��
����� �
���� ��
����� � �
�����

Classical Bigram
(166 Clusters)

Interpolation over
the distanced bigram
language models
for � � �� � (166
Clusters)

�����	�� �������� �������� �������� �����	�� ��������

Classical Bigram
(166 Clusters)

Interpolation over
the distanced bigram
language models for
� � �� �� � (166
Clusters)

�����	�� �������� ����	��� �����	� �������� �����
��

Classical Bigram
(166 Clusters)

Interpolation over
the distanced bigram
language models for
� � �� � with robust
mean estimation (166
Clusters)

�����	�� ����	��� ������
	 �������� ����		�� ���
����

Interpolation over
the distanced bigram
language models for
� � �� � with robust
mean estimation (360
Clusters)

Interpolation over
the distanced bigram
language models
for � � �� � with
robust mean and
covariance estimation
(360 Clusters)

�������� ����	��� �������� ��	
�	�	 �����	
� ���
����


