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ABSTRACT 
Speech segmentation at a phone level imposes high resolu-
tion requirements in the short-time analysis of the audio sig-
nal. In this work, we employ the Bayesian information crite-
rion corrected for small samples and model speech samples 
with the generalised Gamma distribution, which offers a 
more efficient parametric characterisation of speech in the 
frequency domain than the Gaussian distribution. Using a 
computationally inexpensive maximum likelihood approach 
for parameter estimation, we attest that the proposed adjust-
ments yield significant performance improvement in noisy 
environments. 

1. INTRODUCTION 

The identification of the starting and ending boundaries of 
voice segments in continuous speech is an important prob-
lem in many areas of speech processing. It can benefit seg-
ment-based speech recognition, concatenative speech syn-
thesis and automatic transcription systems. 

Many recent works in the phonemic segmentation em-
ploying statistical methods exist in the literature. [1] intro-
duces a novel approach for text-independent speech segmen-
tation, where preprocessing is based on critical-band percep-
tual analysis.  It obtains 74% segmentation accuracy, while 
limiting over-segmentation to a minimum. [2] examines a 
maximum a-posteriori (MAP) decoding strategy for seg-
ment-based speech recognition where landmarks are mod-
elled in addition to phonemic acoustic units. In [3], a two-
step hidden Markov model (HMM) based approach is pro-
posed, where a well-trained context dependent boundary 
model for segment boundary refinement is adapted using a 
MAP approach. The segmentation accuracy within a 20ms 
tolerance exceeds 90%. [4] also deals with phoneme recogni-
tion using a hierarchical structure of multilayer perceptrons, 
where a block of spectral vectors is split into several blocks 
processed separately. An overview of machine learning tech-
niques exploited for phone segmentation is given in [5]. 
Evaluating HMMs, artificial neural networks (ANN), dy-
namic time warping (DTW), Gaussian mixture models 
(GMM), and pronunciation modelling, it is concluded that 
they yield 85-90% detection accuracy, when training data are 
available and a 20ms tolerance is assumed. [6] also uses a 
modified HMM recogniser and propose a statistical correc-
tion procedure to compensate for the systematic errors pro-

duced by context-dependent HMMs. The algorithm is evalu-
ated using the percentage of boundaries with errors smaller 
than 20ms as a figure of merit and attest that over 90% accu-
racy is possible. An evaluation of phoneme segmentation for 
unit selection synthesis showed that DTW is prone to gross 
labelling errors, while HMM modelling exhibits a systematic 
bias of 15ms [7]. 

In this paper, we propose an unsupervised automatic 
acoustic change detection algorithm that identifies phone 
boundaries in speech, using the Bayesian information crite-
rion (BIC) for statistical inference. Avoiding the need for 
linguistic constraints and training data, the algorithm is suit-
able for speech enhancement in telecommunications, speech 
transcription in computer-aided systems as well as multilin-
gual speech recognition and synthesis applications. In this 
paper, the representation power of generalised gamma distri-
bution (GΓD) is exploited, instead that of Gaussian distribu-
tion (GD), in order to model the noisy speech signal effi-
ciently while, at the same time, the limited availability of 
information in frame-based speech processing is accounted 
for thanks to small-sample approximations of BIC for statis-
tical model comparisons. 

2. PHONEMIC SEGMENTATION USING THE 
BAYESIAN INFORMATION CRITERION 

Speech may be roughly considered as the result of sequential 
linking of phones. In short-time analysis, the speech signal is 
typically considered stationary and the voiced segments 
quasi-periodic. Consequently, in statistical phone segmenta-
tion, it is assumed that the properties of the speech signal 
change instantly in the transition from one phone to the next. 

Common statistical methodology in speech segmenta-
tion embraces binary decision-making strategies. When sta-
tistical parameters are estimated from random samples, they 
are also considered as random variables. This additional level 
of uncertainty can be represented by a posterior distribution 
over parameter values (Bayesian perspective) or by the sam-
pling distribution of the unknown true parameters (frequen-
tist perspective). The Bayesian approach to model selection 
is based on posterior model probabilities. Given a model 
selection problem, in which we have to choose between two 
models M0 and M1 parameterised by parameter vectors θ0 
and θ1, on the basis of a data vector x, we can choose the 



model with the higher posterior probability, using Bayes’ 
theorem, by calculating their marginal likelihood ratio 
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where BF is the Bayes factor, i.e. the ratio of the integrated 
likelihoods for the two competing models 
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(2) is similar to a likelihood-ratio test (LRT), but instead of 
maximising the likelihood, we average it over the parame-
ters. The value of BF measures the strength of evidence, 
meaning that it is more appropriate in the context of infer-
ence rather than decision-making under uncertainty.  

A large-sample approximation of BF is BIC. It is an 
asymptotically optimal method for estimating the best 
model using only sample estimates [8]. BIC is viewed as a 
penalised maximum likelihood (ML) technique, because it 
imposes a penalty for model complexity in order to battle 
over fitting. It is defined as  

ˆ( ) 2 ( ) ln(k k kBIC M L d n= − +θ )  (3) 

where k̂θ are the ML estimation (MLE) parameters, 

is the maximised log-likelihood func-
tion under model Mk, 

ˆ ˆ( ) ln ( | )k k kL P M=θ θ
dim( )k kd = θ is the dimension of the 

parameter space for kM , and n is the sample size. For suffi-
ciently large n, the best model for the data is the one that 
maximises the BIC. So, considering a binary hypothesis 
test, we could indicate that M1 best fits the data, if its BIC 
value is greater than that of the reference model M0 that is 
assumed to stand by default. BIC provides a close approxi-
mation to BF, when the prior over the parameters is the unit 
information prior. This is a multivariate normal prior with 
mean at the MLE and variance equal to the expected infor-
mation matrix for one observation. It can be regarded as a 
prior distribution that contains the same amount of informa-
tion as a single observation.  

An acoustic change detection system based on BIC is 
DISTBIC, a two-pass distance-based algorithm that 
searches for change point candidates at the maxima of dis-
tances computed between adjacent windows over the entire 
signal [9]. First, assuming that the audio signal is Gaussian, 
distances of adjacent fixed-length windows are computed in 
order to identify possible candidates for a change point. 
Different criteria such as the Kullback-Leibler distance, the 
generalised LRT or BIC can be applied. When the window 
is sufficiently small, it can be assumed as a homogenous 
segment. The offset of the sliding window defines the reso-
lution of the system. Next, a plot of distances is created and 
significant local peaks are selected as candidate change 
points by applying heuristic rules. In the last step, a sliding 
window moves over the signal, making statistical decisions 
at each candidate point ti. The boundaries of this window 
are determined by candidate points ti-1 and ti+1. The adjacent 
signal sub-windows are modelled using different multivari-

ate GDs while their concatenation is assumed to obey a 
third multivariate GD, as in Fig. 1. The problem is to decide 
whether the data in the large segment fit better a single GD 
or whether a two-segment representation describes it more 
accurately. The decision problem is undertaken by using 
BIC as a model selection criterion. This step can be iterated 
in order to validate or discard the candidates determined in 
the first step. Let xi be Q-dimensional feature vectors in a 
transformed domain, i.e. Mel Frequency Cepstral Coeffi-
cients (MFCC) representation, ΣZ and ΣX, ΣY, respectively 
be the covariance matrices of the complete sequence Z and 
the two subsets X and Y, while m and n-m are the number 
of feature vectors for each subset.  

 
  

 
 
 

Figure 1 - Models for two adjacent speech segments 
 

For the purpose of phonemic segmentation, we would need 
to evaluate the following statistical hypotheses at the time 
instant ti: 
- H0: (x1,x2,...,xn)~N(μZ,ΣZ): the data sequence comes from 

one source Z (i.e., noisy speech/silence, the same phone) 
- H1: (x1,x2,...,xm)~N(μX,ΣX), (xm+1,xm+2,...,xn)~N(μY,ΣY): the 

data sequence comes from two sources X and Y, i.e. there is 
a transition from speech utterance to silence, or a transition 
between two different phones or vice versa 

DISTBIC follows a variable window scheme by using rela-
tively small window sizes in areas where boundaries are 
very likely to occur, while increasing the window size more 
generously when boundaries are unlikely to occur. Incorpo-
rating long-term speech information (i.e. more observations) 
to the decision rule benefits the speech/pause discrimination 
and phone transition detection. DISTBIC has been found 
efficient in detecting acoustic changes that are relatively 
close one another, but at the price of many falsely detected 
changes. By tuning the parameters of the algorithm it is pos-
sible to fix the over-segmentation (false alarms) on a mini-
mum value and then try to maximise the detection rate.  

3. MODIFICATION OF BIC FOR SMALL SAMPLES 

A central problem in statistical inference is dealing with 
situations, where little information from data is provided. 
This is clearly the case with phone segmentation where the 
duration of a single phone can be as small as a few milli-
seconds. BIC is a dimension consistent information crite-
rion that attempts to consistently estimate the dimension of 
the true model. Assuming that the true model exists and it is 
in the set of candidate models, BIC will select it asymptoti-
cally with probability 1 as sample size increases. This con-
sistency imposes large sample size requirements in order to 
achieve efficient statistical inference. Due to this limitation, 
the application of the BIC measure to target domains con-
taining an insufficiently small number of samples requires 
caution.  

A method widely used in probabilistic modelling to 
approximate the value of marginal likelihoods in model 

ti 

X~N(μX,ΣX) 

1 2 m m+1 m+2 n

m feature vectors n-m feature vectors

Y~N(μY,ΣY) 

Z~N(μZ,ΣZ) 
ti-1 ti+1



comparison is Laplace’s method. The integrals in (2) can be 
efficiently approximated using this method provided that 
the posterior density is highly peaked. Using this approxi-
mation and substituting θ with the MLE parameter esti-
mates θ  there, it is possible to derive approximations to the 
BF by suggesting alternative model complexity penalties. 
Subsequently, it is possible to derive modified BIC criteria 
that perform better than ordinary BIC for model selection 
and for different sample sizes. Bollen’s approximation 
ABF2 is derived by considering a specific implicit unit in-
formation prior that is more flexible than BIC [10]. By us-
ing Laplace’s approximation for likelihood, choosing a spe-
cially scaled unit information prior  
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where EI  is the expected information matrix per observa-
tion. It has been attested that the performance gain using 
ABF2 instead of BIC in small samples (n<60) is significant 
[10]. BICC (BIC corrected for small samples) is another 
approximation that performs better than BIC, both in terms 
of mean squared error of the parameter estimates and in 
terms of prediction error [11]. It is defined as: 
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For the purpose of this paper, we are going to use BICC and 
ABF2 approximations as model selection criteria and we 
will evaluate them as viable components for automatic 
phonemic segmentation systems. 

4. PHONEMIC SEGMENTATION USING GΓD 

A critical parameter that affects the performance of statistical 
speech segmentation methods is the choice of distribution for 
modeling clean speech and noise/silence. A common as-
sumption for most algorithms in speech processing is that 
both noise and speech spectra can be modelled satisfactorily 
by GDs. Nevertheless, many works have demonstrated that 
Laplacian (LD) and Gamma (ΓD) distributions are more 
suitable than GD for approximating active voice segments 
for many frame sizes [12]. Recently, it has been asserted that 
the generalised Gamma, GΓD, fits the voiced speech signal 
even better, especially in small frame sizes, and consequently 
it offers great perspectives for very short-time speech analy-

sis and phone boundary detection [13]. [13] used a two-sided, 
3-parameter version of GΓD, defined as 
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where b,  a, and c are positive real values corresponding to 
scale (b) and shape (a, c) parameters, respectively. GD is a 
special case of (7) for c=2 and a=0.5. For c=1 and a=1, (7) 
yields the LD, while for c=1 and a=0.5, it represents the 
common ΓD. This special property, allows us to model both 
clean speech and noise/silence with a GΓD 

In this paper, we introduce an improved version of the 
DISTBIC algorithm, DISTBIC-Γ, where we modify the 
pre-segmentation and refinement steps by assuming a GΓD 
distribution model for our signal in the analysis windows 
instead of GD. Zero inputs are ignored, because the GΓD in 
(7) cannot be specified exactly, when the argument equals 
zero. The proposed algorithm, DISTBIC-Γ, works in two 
steps. First, using a sufficiently big sliding window and 
modelling it and its adjacent sub-segments with GΓDs in-
stead of GDs, we calculate the BF associated with the hy-
pothesis test. The distribution parameters in (7) are esti-
mated using a computationally efficient on-line algorithm 
based the gradient ascent algorithm that has been intro-
duced in [13]. Starting from an initial value, the shape pa-
rameter c is numerically determined with the gradient as-
cend algorithm according to the MLE principle. Using a 
learning factor, we can then re-estimate the value of c that 
locally maximizes the log-likelihood function L, until L 
convergences, by iteratively updating it over the sample 
data. Using this value and the data samples, we can deter-
mine the scale (b) and shape (a) parameters. Once the pa-
rameters for each of the Q components have been esti-
mated, the likelihood ratio can be calculated. Here, we are 
making the assumption that the noisy speech signal has 
uncorrelated components in the MFCC domain. Depending 
on the window size, this gives a reasonable approximation 
for the multivariate probability densities with the marginal 
probability distribution functions. Since the multivariate 
equivalents of likelihood are simple products over the Q 
components, the average BF can be easily calculated. Next, 
we create a plot of the distances as output with respect to 
time and filter out insignificant peaks using the same heu-
ristic criteria as [9]. In the second step, using the BIC test as 
a merging criterion, we compute BIC values for each seg-
mentation point candidate in order to validate the results of 
the first step. In order to further improve performance we 
also propose alternative versions of the algorithm, 
DISTBICC-Γ and DISTABF2-Γ, where the classical BIC is 
replaced by BICC and ABF2 respectively. Let  and 0 ()ψ

1 ()ψ  denote the digamma, and trigamma functions. The 
model complexity penalty for ABF2, assuming GΓD mod-
elling is given by (5) where  
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and  is the parameter vector for model Mk at 
MLE. The four algorithms, DISTBIC, DISTBIC-Γ, 
DISTBICC-Γ, and DISTABF2-Γ are tested in the setting of 
phonemic segmentation in the next section. 

ˆ ˆ( , , )T
k a b c=θ 2

1
PRC RCL

F
PRC RCL
⋅ ⋅

=
+

 (10) 

Fig. 2 and 3 depict the overall performance of the 4 algo-
rithms. The Recall-Precision and F1-measure results of our 
tests are also illustrated in Tables 1 and 2. For each case, 
we calculate the average rates over all recordings. The im-
proved results over the baseline algorithm DISTBIC dem-
onstrate the higher representation power of the GΓD despite 
making independence assumptions regarding the distribu-
tion components. Furthermore, we deduce that small-
sample corrected versions of BIC allow additional im-
provement in detection accuracy. DISTABF2-Γ performs 
best, followed by DISTBICC-Γ. The performance im-
provement is most notable at low SNRs. 

5. EVALUATION 

The performance of the proposed methods is evaluated us-
ing two sets of experiments on two different datasets. In the 
first experiment, we compare the efficiency of the proposed 
methods using samples from the M2VTS audio-visual da-
tabase [14]. In our tests we used 25 audio recordings that 
consist of the utterances of ten digits from zero to nine in 
French. We measured the mismatch between manual seg-
mentation of audio performed by a human transcriber and 
the automatic segmentation. The human error and accuracy 
of visually and acoustically identifying segmentation points 
were taken into account. A phone boundary identified by 
the system is considered “correct” if it is placed within a 
range of ±10ms from a hand-labelled segmentation point, 
which implies a 20ms tolerance. In the second set of ex-
periments, we used 192 utterances from the Core Set Test 
of the TIMIT dataset [15] totalling 583 seconds of speech 
time. The segmentation performance was evaluated against 
the pre-existing phoneme labelling. For both experiments 
we used the same set of parameter values and features 
(50ms initial window, 20ms shift of analysis window, first 
12 MFCCs excluding the energy component). White and 
babble noise from the NOISEX-92 database [16] was added 
to the clean speech samples at various signal to noise ratios 
(SNR) levels ranging from 20 to 5 dB.  

 

 
Figure 2 - Overall system evaluation using the F1 measure for the 

M2VTS dataset 
 

 

The detection performance of the system can be as-
sessed by precision (PRC) and recall (RCL) rates 

100%     100%
CFC CFC

PRC RCL
DET ACP

= =  (9) 

where CFC is the number of correctly found changes, DET 
is the number of changes detected by the system, and ACP 
is the number of actual change points. The overall objective 
effectiveness of the system is assessed by the F1-measure.  

Figure 3 - Overall system evaluation using the F1 measure for the 
TIMIT dataset 

 
Table 1 - Recall, Precision, and F1 measure in M2VTS 

  DISTBIC DISTBIC-Γ DISTBICC-Γ DISTABF2-Γ 

Noise SNR 
(dB) PRC RCL F1 PRC RCL F1 PRC RCL F1 PRC RCL F1 

(clean) - 69.4 79.9 74.2 74.6 82.1 78.1 76.1 83.6 79.6 78.1 84.6 81.2 
white 20 67.2 76.8 71.6 72.2 80.5 76.1 74.6 81.9 78.1 76.3 82.9 79.4 
white 10 63.6 72.2 67.6 68.3 76.1 72.0 72.8 80.0 76.2 74.5 81.2 77.7 
white 5 58.2 67.6 62.5 64.9 73.4 68.9 69.2 77.4 73.0 73.1 79.5 76.1 
babble 20 64.7 74.2 69.1 69.1 78.2 73.3 71.9 80.8 76.0 73.7 81.2 77.3 
babble 10 61.9 70.7 66.0 67.6 75.9 71.5 69.3 77.9 73.4 71.5 78.7 74.9 
babble 5 57.2 66.1 61.2 64.3 73.0 68.4 67.3 75.0 70.9 69.9 77.1 73.3 

 

 

 



Table 2 - Recall, Precision, and F1 measure in TIMIT 

  DISTBIC DISTBIC-Γ DISTBICC-Γ DISTABF2-Γ 
Noise SNR (dB) PRC RCL F1 PRC RCL F1 PRC RCL F1 PRC RCL F1 
(clean) - 67.9 77.7 73.3 72.3 82.1 76.8 74.4 82.8 78.4 76.6 83.4 79.8 
white 20 65.4 76.3 70.7 70.2 79.4 74.4 72.2 81.7 76.6 74.8 82.7 78.5 
white 10 60.9 71.4 66.6 67.3 77.5 72.0 69.6 78.8 73.9 72.7 79.8 76.0 
white 5 54.5 66.0 60.7 63.3 74.6 68.5 67.1 76.2 71.3 70.9 79.3 74.9 
babble 20 62.5 73.2 68.5 69.6 77.5 73.3 72.0 78.5 75.1 72.5 80.7 76.4 
babble 10 58.4 66.5 63.5 67.7 75.8 71.5 69.1 77.8 73.1 71.4 79.6 75.3 
babble 5 51.1 62.1 57.0 60.6 71.0 65.3 64.9 73.3 68.8 68.8 75.9 72.1 

  

6. CONCLUSIONS 

We have demonstrated that by representing noisy speech 
with a GΓD in the MFCC domain, we are able to yield im-
proved results compared to GD for an offline two-pass phone 
segmentation algorithm. While GΓD offers great flexibility 
and can represent accurately the speech signal especially in a 
small scale, its MLE is problematic since it has large bias in 
moderate and small sample sizes. Nevertheless, judging from 
the results in the present application, this inefficiency is not 
destructive and we are able to relax the convergence re-
quirements of the online gradient ascent algorithm for the 
parameter estimation by assuming initial values close to ΓD 
or LD. Moreover, by considering small-sample corrections to 
BIC, we were able to further improve phone segmentation 
accuracy. Evaluation in two different datasets and for differ-
ent noise conditions confirmed that ABF2 performed best 
overall, followed by BICC. The superior results in small 
sample sizes can be credited to the fact that ABF2 has more 
flexible implicit unit information prior than BIC. 
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