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Abstract- In this work, we model speech samples with the 

generalized Gamma distribution and evaluate the efficiency of 
such modelling for voice activity detection. Using a 
computationally inexpensive maximum likelihood approach, we 
employ the Bayesian Information Criterion for identifying the 
phoneme segment boundaries in noisy speech. 

 

I. INTRODUCTION 

A common problem in many areas of speech processing is 
the identification of the presence or absence of a voice 
component in a given signal, especially the determination of 
the starting and ending boundaries of voice segments. In this 
work, we are interested in voice activity detection (VAD) and 
acoustic change detection algorithms suitable for applications 
such as automatic transcription and speech segmentation in 
video editing. Our goal is to implement and evaluate a robust 
detection algorithm for noisy signals, various classes of noise, 
and short frames. Categorisation of audio signal at a small 
scale has applications to phoneme segmentation and 
consequently, to speech recognition and synthesis. 

Conventional systems follow energy-based approaches, 
which have been proved computationally efficient, almost 
allowing real-time signal processing [1]. These methods work 
relatively well in high signal to noise ratios (SNR) and for 
known stationary noise. But in low SNRs, the performance and 
robustness of energy-based voice activity detectors is not 
optimal. Since they rely on simple energy thresholds, they are 
not able to identify unvoiced speech segments like fricatives 
satisfactorily, as the latter can be masked by noise. They may 
also misclassify non-stationary noise such as clicking as speech 
activity. Furthermore, they are inefficient in real-world 
recordings where speakers tend to leave artefacts such as  
breathing/sighing, teeth chatters, and echoes. 

Recently, much research has been done with respect to the 
exploration of the speech and noise signal statistics for VAD.  
Statistical model-based methods typically employ a decision 
rule derived from the likelihood ratio test (LRT) applied to a 
set of hypotheses [2]. These approaches can be further 
improved by incorporating soft decision rules [3] and higher 
order statistics (HOS) [4]. Since model-based methods are 
more complicated than the energy-based detectors with respect 
to the computation time and storage requirements, they have a 
limited appeal in online applications. 

In this paper, we present a statistical model-based method 
for VAD using the generalised version of the Gamma 
distribution, which offers more efficient parametric 
characterisation of the speech spectra than the Gaussian 
distribution (GD). We evaluate the system performance in the 
identification of phoneme segment boundaries. From the 
results presented in Sect. 5 we attest that the proposed method 
yields significant improvements in noisy environments. 

 

II. SPEECH MODELLING 

A critical parameter that affects the performance of 
statistical-based VAD methods is the choice of the distribution 
for the modelling of clean speech and noise/silence. A common 
assumption for most VAD algorithms is that both noise and 
speech spectra can be modelled satisfactorily by GDs. 
Furthermore, using a transformed feature space, it is also 
possible to assume that these two Gaussian random processes 
are independent of each other and the spectral coefficients of 
the clean speech and noise differ only in magnitude. In such 
cases, maximum a posteriori estimators can be used to 
determine the signal parameters.  

Nevertheless, the choice of the GD is generally justified on 
its simplicity and its nice theoretical properties (e.g. central 
limit theorem). Previous work in speech processing has 
demonstrated that Laplacian (LD) and Gamma (ΓD) 
distributions are more suitable than GD for approximating 
active voice segments for many frame sizes [5], [6]. More 
specifically, LD fits well the highly correlated univariate space 
of the speech amplitudes as well as the uncorrelated 
multivariate space of the feature values after a Karhunen-
Loeve Transformation (KLT) or Discrete Cosine 
Transformation (DCT) [7]. While some reports attest that LD 
offers only a marginally better fit than GD, this is not valid 
when silence is absent from the test [5]. The reason is that 
while clean speech segments best exhibit LD or ΓD properties 
silence is more efficiently modelled by a Gaussian random 
process. 

Recently, it has been asserted that the generalized ΓD (GΓD) 
fits the voiced speech signal even better than Gamma, 
Laplacian, and normal distributions [8]. GΓD is defined as 
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where Γ(z) denotes the gamma function and γ, η, β are real 
values corresponding to location, scale and shape parameters. 



GD is a special case of (1) for γ=2 and η=0.5. For γ=1 and η=1 
(1) yields the LD, while for γ=1 and η=0.5 it represents the 
common ΓD.  

Although the GΓD is an extremely flexible distribution it has 
been used mostly in reliability modelling and life data analysis. 
Until recently, little interest was shown in speech processing 
literature, the main reason being its complexity. Estimating the 
parameters of GΓD in analytically using the maximum 
likelihood estimation (MLE) method is difficult, because the 
maximised likelihood results in nonlinear equations involving 
numerical integrations. A computationally inexpensive on-line 
algorithm for GΓD, based on the gradient ascent algorithm, has 
been introduced in [8]. The location parameter is numerically 
determined by using the gradient ascend algorithm according 
to the MLE principle. Using a learning factor we can then 
reestimate the location value that locally maximizes the 
logarithmic likelihood function L, until L convergences. Using 
this value and the data samples we can determine the scale and 
shape parameters. Given N mutually independent data 
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updating each time the parameter γ as 
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where ξ is a forgetting factor and µ is the learning rate of the 
gradient ascent approach. Using appropriate initial estimates 
for the parameter γ (e.g. (1) 1γ = , which corresponds to GD or 
LD), we are able to recursively estimate the remaining 
parameters by solving the equations:  
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where ψ0 is the digamma function. The left part of (6) is 
monotonically increasing function of ( )nη , so we can 
determine uniquely the solution by having an inverse table. 

 

III. BAYESSIAN INFORMATION CRITERION 

The Bayesian Information Criterion (BIC) is an 
asymptotically optimal method for estimating the best model 
using only sample estimates [9]. It can be viewed as a 
penalized maximum likelihood technique. BIC can also be 
applied as a termination criterion in hierarchical methods for 
clustering of audio segments: two nodes can be merged only if 
the merger increases the BIC value. 

In BIC, adjacent signal segments are modelled using 
different multivariate GDs while their concatenation are 
assumed to obey a third multivariate GD, as in Fig. 1.  The 

problem is to decide whether the data in the large segment fit 
better a single Gaussian or whether a two-segment 
representation describes it more accurately. A sliding window 
moves over the signal V(m) making statistical decisions at its 
middle. The step-size of the sliding window indicates the 
resolution of the system. For the purpose of VAD, we need to 
evaluate the following statistical hypotheses: 
- H0: (x1,x2,...,xB)~N(µZ,ΣZ): the data sequence comes from 

one source Z (i.e., noisy speech) 
- H1: (x1,x2,...,xA)~N(µX,ΣX) and (xA+1,xA+2,...,xB)~N(µY,ΣY): 

the data sequence comes from two sources X and Y, 
meaning that there is a transition from speech utterance to 
silence or vice versa 

where xi are K-dimensional feature vectors in a transformed  
domain such as the Mel Frequency Cepstral Coefficients 
(MFCCs). Let ΣX, ΣY, and ΣZ be the covariance matrices of the 
complete sequence Z and the two subsets X and Y, while A and 
B-A are the number of feature vectors for each subset. 
 
 
 
 
 
 
 
 

 
Fig. 1. Models for two adjacent speech segments. 

 
 
The variation of the BIC value between the two models is 
given by [10] 
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where R is the Generalized Likelihood Ratio Test (GLRT), P is 
the penalty for model complexity and λ is a tuning parameter 
for the penalty factor. In (9) ( , ; )x xL x µ Σ  represents the 
likelihood of the sequence of feature vectors X given the multi-
dimensional Gaussian process ( , ; )x xN x µ Σ . ( , ; )y yL y µ Σ  and 

( , ; )z zL z µ Σ  can be similarly defined. Assuming multivariate 
GD modelling and we can easily calculate ∆BIC from sample 
values: 
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Negative ∆BIC values indicate that the multi-dimensional 
Gaussian mixture best fits the data, meaning that t is a change 
point from speech to silence or vice versa. BIC does not 
involve thresholds, but there is still the penalty factor λ that 
depends on the type of analysed data and must be estimated 
heuristically [11]. Also, BIC tends to choose oversimplistic 
models due to the heavy penalty on the complexity. 

t 
X~N(µX,ΣX) 

1 2 A A+1 A+2 B

A feature vectors B-A feature vectors 

Y~N(µY,ΣY) 

Z~N(µZ,ΣZ) 



Nevertheless, BIC is a consistent estimate and various 
algorithms have extended the basic method combining it with 
other metrics such as Kullback-Leibler (KL) distance, 
sphericity tests, and HOS [4], [10]. 

Such a variant of BIC that attempts to deal with some of the 
problems mentioned above is DISTBIC. This is a two-pass 
distance-based algorithm that searches for change point 
candidates at the maxima of the distances computed between 
adjacent windows over the entire signal [10]. First, it uses a 
distance computation to choose the possible candidates for a 
change point. Different criteria such as KL or GLRT can be 
applied to this pre-segmentation step. Using the log-value of 
the GLRT, associated with the defined hypothesis test, the 
dissimilarity between the two subsequent segments of Fig. 1 is 
measured by 
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In the second step, ∆BIC values are used in order to validate or 
discard the candidates determined in the first step. The last step 
can be iterated and serves as a refinement step in order to avoid 
over-segmentation. 
 

IV. DISTBIC USING GENERALIZED GAMMA DISTRIBUTION 

Our goal is to detect the boundaries of phoneme segments 
without any previous knowledge of the audio stream while 
achieving a robust performance under noisy environments. For 
this purpose we introduce an improved version of the 
DISTBIC algorithm, DISTBIC-Γ, where the signal is modelled 
using the generalized ΓD (GΓD) instead of GD. Considering 
the experimental findings mentioned in Sect. 2 we modify the 
presegmentation and refinement steps of the DISTBIC 
algorithm by assuming a GΓD distribution model for our signal 
in the analysis windows. 
The proposed algorithm, DISTBIC-Γ, works in two steps. 
First, using a sufficiently big sliding window and modelling it 
and its adjacent sub-segments using GΓDs instead of GDs, we 
calculate the distance dR associated with the GLRT using (12). 
Once the parameters for each of the K variables have been 
estimated with the online gradient ascent algorithm, the 
likelihood ratio can be calculated. Here, as in [7], we are 
making the assumption that both noise and speech signals have 

uncorrelated components { } 1
Kx i= in the DCT domain. 

Depending on the window size, this assumption gives a 
reasonable approximation for their multivariate probability 
distribution functions (PDF) using the marginal PDFs. Using 
(2) and (3), the average log-likelihood function for each 
univarate marginal distribution in the given hypothesis test is: 
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Since the multivariate equivalents are simple products over the 
K components the dissimilarity distance in (12) can be easily 
calculated. A potential problem arises when using MLE for 
short segments, but we can relax the convergence conditions of 

the gradient ascend method and still yield improved results [8]. 
Then, we create a plot of the distances as output with respect to 
time and filter out insignificant peaks using the same heuristic 
criteria as [10]. In the second step, using the BIC test as a 
merging criterion, we compute the ∆BIC values for each 
change point candidate in order to validate the results of the 
first step. Because small frame lengths suggest a GD according 
to [5] and due to the length limitation of the gradient ascend 
method for GΓD parameter estimation, we can use Gaussians 
in this step. 
 

V. EXPERIMENTS 

The performance of the proposed method is evaluated using 
two sets of experiments on two different corpora. In the first 
experiment, we compare the efficiency of the proposed method 
using samples from the M2VTS audio-visual database [12]. In 
our tests we used 15 audio recordings that consist of the 
utterances of ten digits from zero to nine in French. We 
measured the mismatch between manual segmentation of audio 
performed by a human transcriber and the automatic 
segmentation. The human error and accuracy of visually and 
acoustically identifying break points were taken into account. 
In the second set of experiments, we used samples from the 
TIMIT dataset [13] totalling 100 seconds of speech time. The 
performance of the detector was evaluated against the pre-
existing phoneme labelling. For both experiments we used the 
same set of parameter values and features (500ms initial 
window, 5ms shift of analysis window, first 12 MFCCs for 
GD, 10 DCTs for GΓD, λ=7). White and babble noise from the 
NOISEX-92 database [14] was added to the clean speech 
samples at various SNR levels ranging from 20 to 5 dB. 

The errors that can be identified in VADs are distinguished 
by whether speech is misclassified as noise or vice versa, and 
by the position in an utterance in which the error occurs 
(beginning, middle or end). A point incorrectly identified as a 
change point gives a type-2 error (false alarm) while a point 
totally missed by the detector is a type-1 error (missed 
detection). The detection error rate of the system is described 
by the false alarm rate (FAR) and the missed detection rate 
(MDR) defined below. ACP stands for the actual change points 
in the signal as determined by human in our case. 
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A high value of FAR means that an over-segmentation of the 
speech signal is obtained, while a high value of MDR means 
that the algorithm does not segment the audio signal properly. 
An important aspect inherited from original DISTBIC is that 
segmentation results can be refined by an iterative operation. 
Also, by tuning the system parameters (e.g. frame size) it is 
possible to search for an optimal FAR after the required MDR 
has been met. The results for the VAD error rates are 
illustrated in Table I, II, III, and IV. Just as in DISTBIC, it is 



possible to fine-tune the performance and limit the over-
segmentation by changing the penalty factor λ. 

The detection performance of the system can also be 
described by precision (PRC) and recall (RCL) rates 
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where CFC is the number of correctly found changes, DET is 
the number of changes detected by the system, and ACP is the 
number of actual change points. The overall effectiveness of 
the system can be evaluated by the F1-measure: 
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The Recall-Precision (R-P) results of our tests are illustrated in 
Table V, VI, VII, and VIII. For each case, we calculate the 
average PRC, RCL, and F1 rates over the test samples. 
Examining the average F1-measure for each case using a two-
sample one-tailed t test we see that the DISTIBIC-Γ 
performance is superior to DISTBIC at a confidence level of 
0.05 for every case since the t values are larger than the 
corresponding critical values (t0=1.701 for M2VTS and 
t0=1.677 for TIMIT). The significance test results are depicted 
in tables IX and X. We can deduce that there is notable 
improvement especially at low SNRs. We also notice the 
improvement in the recognition of unvoiced speech elements. 
The improved results demonstrate the higher representation 
power of the GΓD. Likewise, [15] have also yielded improved 
VAD performance by modeling speech and noise with a two-
sided GΓD in the DFT domain. Their LRT-based detector 
obtained better results under vehicular and office noise than 
conventional methods. In our work we have presented a more 
robust threshold-tuning method based on DISTBIC and 
asserted that we can operate in the DCT domain as well with 
similar success. 
 

TABLE I 
ERROR RATES OF VAD IN M2VTS (VOICED PHONEMES) 

 DISTBIC-Γ DISTBIC 

Noise SNR FAR MDR PRC RCL 
(clean) - 22.6 16.4 27.5 19.2 
white 20 24.8 19.7 29.4 23.4 
white 10 25.1 20.3 30.5 24.4 
white 5 28.2 23.5 35.4 29.8 
babble 20 27.5 21.3 32.7 24.7 
babble 10 28.8 24.1 34.9 28.4 
babble 5 31.4 26.8 38.5 32.7 

 
TABLE II 

ERROR RATES OF VAD IN TIMIT (VOICED PHONEMES) 
 DISTBIC-Γ DISTBIC 

Noise SNR FAR MDR PRC RCL 
(clean) - 25.5 17.1 31.4 19.6 
white 20 26.9 18.5 32.2 23.2 
white 10 29.4 22.8 33.3 26.9 
white 5 32.4 25.0 38.8 31.9 
babble 20 30.5 20.6 33.8 25.6 
babble 10 31.8 24.4 36.6 29.3 
babble 5 34.9 27.7 40.8 35.3 

 
 

 
TABLE III 

ERROR RATES OF VAD IN M2VTS (VOICED + UNVOICED) 
 DISTBIC-Γ DISTBIC 

Noise SNR FAR MDR PRC RCL 
(clean) - 27.5 18.2 29.9 21.5 
white 20 28.9 19.4 32.5 23.9 
white 10 30.3 22.5 35.4 28.0 
white 5 34.1 25.9 39.8 33.1 
babble 20 28.8 21.6 33.5 26.2 
babble 10 31.6 24.2 37.6 31.4 
babble 5 36.1 28.0 42.4 37.5 

 
TABLE IV 

ERROR RATES OF VAD IN TIMIT (VOICED + UNVOICED) 
 DISTBIC-Γ DISTBIC 

Noise SNR FAR MDR PRC RCL 
(clean) - 28.3 18.7 32.1 24.5 
white 20 31.2 20.9 34.5 25.7 
white 10 33.1 24.4 37.5 30.5 
white 5 35.7 28.5 40.4 36.4 
babble 20 33.1 22.1 35.0 27.8 
babble 10 34.0 25.8 38.6 32.5 
babble 5 36.5 29.1 43.5 38.7 

 
TABLE V 

PERFORMANCE OF VAD IN M2VTS (VOICED PHONEMES) 
 DISTBIC-Γ DISTBIC 

Noise SNR PRC RCL F1 PRC RCL F1 
(clean) - 76.3 83.5 79.6 71.2 80.8 75.6 
white 20 73.1 80.4 76.5 68.0 76.5 71.9 
white 10 72.6 79.6 75.9 67.0 75.7 70.8 
white 5 68.8 76.5 72.3 61.0 70.2 64.5 
babble 20 70.4 78.8 74.3 65.0 75.3 69.7 
babble 10 68.0 75.7 71.6 62.0 71.8 66.3 
babble 5 65.0 73.3 68.8 57.0 67.5 61.8 

 
TABLE VI 

PERFORMANCE OF VAD IN TIMIT (VOICED PHONEMES) 
 DISTBIC-Γ DISTBIC 

Noise SNR PRC RCL F1 PRC RCL F1 
(clean) - 71.4 82.2 76.4 68.4 78.5 73.1 
white 20 70.7 81.0 75.0 65.0 75.9 70.3 
white 10 68.0 76.9 72.2 60.7 71.3 66.3 
white 5 62.9 74.4 68.3 54.5 65.1 60.6 
babble 20 69.9 79.0 73.5 63.7 73.8 68.4 
babble 10 67.4 76.9 70.5 57.4 67.7 62.3 
babble 5 60.9 71.8 66.0 51.0 62.1 56.6 

 
TABLE VII 

PERFORMANCE OF VAD IN M2VTS (VOICED + UNVOICED) 
 DISTBIC-Γ DISTBIC 

Noise SNR PRC RCL F1 PRC RCL F1 
(clean) - 73.6 82.9 77.9 68.3 80.4 73.8 
white 20 72.0 81.4 76.4 66.1 76.8 70.1 
white 10 68.2 77.3 72.4 63.5 73.2 67.9 
white 5 64.9 75.0 69.6 57.1 68.1 62.1 
babble 20 68.3 79.3 73.3 63.8 74.4 68.6 
babble 10 65.6 75.5 70.2 60.6 70.6 65.2 
babble 5 61.9 72.3 66.7 54.0 64.7 58.8 

 
 
 
 



 
 

TABLE VIII 
PERFORMANCE OF VAD IN TIMIT (VOICED + UNVOICED) 

 DISTBIC-Γ DISTBIC 

Noise SNR PRC RCL F1 PRC RCL F1 
(clean) - 71.0 81.3 76.3 68.1 77.7 73.1 
white 20 69.7 80.5 74.9 64.7 75.1 70.3 
white 10 67.3 77.4 72.4 60.5 71.2 66.3 
white 5 62.4 72.8 68.3 54.6 65.7 60.9 
babble 20 68.7 77.7 73.5 62.7 72.7 68.3 
babble 10 65.2 74.8 70.5 57.5 66.5 63.3 
babble 5 60.0 71.7 65.6 51.2 61.8 56.7 

 
TABLE IX 

TWO-SAMPLE POOLED T-TEST FOR M2VTS 
phonemes voiced voiced+invoiced 

Actual Change Points 17 37 

# recordings 15 15 

critical  value at 0.05 t0=1.701 t0=1.701 

 

Noise SNR t values t values 
(clean) - 4.65 4.86 
white 20 5.52 6.48 
white 10 6.04 5.51 
white 5 9.11 9.44 
babble 20 5.52 5.75 
babble 10 6.52 6.24 
babble 5 8.98 10.1 

 
TABLE X 

TWO-SAMPLE POOLED T-TEST FOR TIMIT 
phonemes voiced voiced+invoiced 

Actual Change Points 13 41 

# recordings 25 25 

critical  value at 0.05 t0=1.677 t0=1.677 

 

Noise SNR t values t values 
(clean) - 6.57 6.37 
white 20 5.68 5.54 
white 10 7.31 7.51 
white 5 9.84 9.41 
babble 20 6.25 6.26 
babble 10 9.46 9.06 
babble 5 12.3 12.1 

 

VI. CONCLUSIONS 

The identification of phoneme boundaries in continuous 
speech is an important problem in areas of speech synthesis 
and recognition. In this paper, we have demonstrated that by 
representing the signal samples with a GΓD we are able to 
obtain improved results compared to the normal distribution 
for offline 2-step VAD. We concluded that the GΓD model is 
more adequate to characterise noisy speech than the Gaussian 
model. Despite making assumptions on the correlation of 
distribution components for the computation of the likelihood 
ratio in GΓD, we generally improved on the VAD 
performance. 
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