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ABSTRACT 
 
This paper proposes a robust and stable fast affine 
projection algorithm based on the Gauss-Seidel method, 
the so called modified Gauss-Seidel fast affine projection 
algorithm. The proposed algorithm is generalized for 
simplified Volterra filters as well.  The computational 
complexity of both the modified Gauss-Seidel fast affine 
projection algorithm and its generalization for Simplified 
Volterra filters is derived and their performance for 
acoustic echo cancellation is assessed.     

 
1. INTRODUCTION 

 
In echo cancellation systems, an adaptive filter algorithm 
is used to reduce the echo. The echo path is usually 
modeled by a linear filter. The known normalized Least 
Mean Squares (NLMS) algorithm has been widely used, 
but it has a slow asymptotic convergence. The affine 
projection algorithm (APA) can be considered as a 
generalization of the NLMS algorithm that provides a 
much improved convergence speed compared to 
stochastic gradient descent algorithms, although it is 
sensitive to high level of noise [1]. It has a performance 
that rivals the more complex Recursive Least Squares 
(RLS) algorithms in many situations.  However, the Fast 
Affine Projection (FAP) algorithm proposed in [2-3] 
suffers from numerical instability, when implemented 
with an embedded fast RLS algorithm. Other difficulties 
are its memory requirements and the code overhead. In [3] 
the relation between Row Action Projections (RAP), 
APA, and Gauss-Seidel is discussed. Other fast affine 
projection alternatives have been proposed in [4-6]. 
However, these variants are suitable for values of the  step 
size close to 1 (e.g. 0 17. ≤< µ ). For such values, these 
algorithms have a fast convergence, but they exhibit a 
high sensitivity to noisy inputs. They employ   some 
approximations that degrade the performance the original 
APA can achieve.  
Unlike these FAP alternatives the modified Gauss-Seidel 
FAP (MGSFAP) algorithm, proposed in this paper, can 

employ any step size ( ]1,0∈µ  like the original FAP [2-3]. 
Therefore, it is more robust to noisy conditions. 
Moreover, it is numerically less complex than other 
similar FAPs for typical values of the projection order.    
The outline of the paper is as follows. The MGSFAP 
algorithm is described in Section 2. A generalization of 
the proposed algorithm for simplified Volterra filters 
(SVF), abbreviated as MGSFAP-SVF, is also proposed in 
a similar way with that in [7]. Moreover, a voice activity 
detector is proposed in order to tackle the sensitivity of 
SVF structure. In Section 3, the behavior of MGSFAP and 
MGSFAP-SVF algorithms for echo cancellation in a 
double-talk scenario is examined. In the same section, the 
computational complexity of the proposed algorithms is 
derived and compared to other commonly used FAP 
algorithms. Section 4 concludes the paper.  

 
2. THE ALGORITHMS  

 
Henceforth,  most of the notations in [2] and  [5] are used. 
Let ( )x n be the input signal , be the desired output 

signal and 
( )  y n

( )e n be the output error. We denote by L the 
filter length, and by N the affine projection order. In the 
following, ( )nR

I

is the auto-correlation matrix of the 

input signal,  is the identity matrix, ( )nδ is a 
regularization factor that prevents the input auto-
correlation matrix from becoming ill-conditioned, µ  is 
the step size. Let ( ) ( ) ( )[ ]nhn 1 nhL,...,=h  be the 1×L  filter 

coefficient vector. ( )nE  is an vector, while 1×N ( )nE  
represents the uppermost  elements of 1−N ( )nE  and 

( )n1−EN  is its last element; Similarly, ( )ne  contains the 
upper 1−N elements of ( )ne . Let 
( ) ( ) ( )[ ]1,..., +−= N )nxnxnα ,  and (nr~  be the vector that 

consists of  the 1−N  lower elements of ( )nr . The step 
size can be chosen within a range from 0 to 1. ( )nR is 
updated by replacing its first row and first column with 
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The key element in a FAP algorithm is the approach to 
solve the linear system in (7a). The choice of the approach 
(i.e., direct or iterative) determines the stability and 
robustness of the FAP algorithm. Several proposed FAP  
algorithms use the following approximation [4-6]: if 

1=µ  (non-relaxed case) the error vector reduces to a 
scalar and only the first column of the inverse of the 
autocorrelation matrix is needed in order to find . 
However, this approximation holds for 7 < µ  as 
well.  In [5], the Gauss-Seidel (GS) method is used to 
solve the linear system b⋅ , where 

. It is known that if the matrix [ 0,...,0 T]1,=b R is 
symmetric and positive definite, the GS method is 
guaranteed to converge. It was shown in [5] and 
confirmed in [6] that one GS iteration is enough for a near 
optimal performance. However, for an arbitrary , the 

solution of the linear system  is preferable 
to the matrix inversion. Like in the Gauss-Seidel Fast 
Affine Projection (GSFAP) algorithm, we propose to use 
the GS method for this purpose. We have called this 
algorithm the modified Gauss-Seidel fast affine projection  
(MGSFAP).  
It is known that low cost loudspeakers or microphones 
introduce nonlinear distortions, especially at high 

volumes. In such cases, the performance of a linear 
acoustic canceller degrades. A common approach is to 
consider nonlinear models [7-8]. Often in the case of the 
nonlinear distortions the simplified Volterra filters (SVF) 
can achieve better system identification than a linear one, 
but at the price of a much higher complexity. We consider 
memory-less non-linearities that have been proposed as a 
reliable model for the nonlinearities that occur in 
amplifiers and loudspeakers [8]. The MGSFAP is 
generalized for SVFs and the resulted algorithm is 
abbreviated as  MGSFAP-SVF. As shown in [7], only the 
computation of the input vector and the generalized 
correlations are affected. We denote by O the order of the 
simplified Volterra filter. The size of the weight vector 
becomes OL instead of L. The extended input vector has 
OL elements and the following form  
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As shown in [7], the nonlinear parameters were adapted 
only during voiced sections. Therefore, a voice activity 
detection algorithm (VAD) is needed. Its performance 
requirements are not high. It should determine relatively 
well the voiced sections, since the stability of the 
algorithm is greatly improved by the regularization 
method. Many approaches were proposed, for example 
there are algorithms based on the short-term energy, zero 
crossing rate, cepstral features, a periodicity measure, 
statistical models, etc. (see [9] and the references therein). 
The energy-based approaches to speech detection suffer 
from a lack of robustness and fail to work well in a wide 
range of SNR, unless some care is taken. We used the 
algorithm proposed in [10] which is exploiting the 
similarity between the signal and its residual prediction by 
computing the magnitude of their coherence function. 
Purely noise frames have a coherence function that admits 
a value close to 1, while the value of the coherence 
function on voiced frames is close to 0. The coherence 
function admits an intermediate value between 0 and 1 for 
unvoiced frames. A threshold is used in order to decide on 
the nature of the considered frame. It was found that a 
threshold value equal to 0.85 is a good compromise for 
different noise situations [10].  The algorithm achieves a 
good performance, it has few parameters to adjust and it 
simple to implement. In integrated systems, some speech 



coding function (LP analysis or residual prediction signal) 
can be re-used in this case.  
 

3. SIMULATIONS 
 

We simulated the algorithm performance using test 
signals recorded in a car cabin. The convergence of the 
algorithm was compared by using the squared norm of the 
difference between the car cabin impulse response and the 
adaptive filter coefficients in dB. The echo return loss 
enhancement (ERLE) is computed in windows of 100 ms 
as follows 

( )
( )

2

10 2
10 log

E y n
ERLE

E e n

 =
  

     (12) 

The Gauss-Seidel procedure requires the execution of a 
number of iterations in order to obtain an acceptable 
accuracy  in the solution of the linear system.  

 
Fig. 1. The error norm between the exact solution and the 
iterated solution of  for two values of the step size a) ( )nε

1µ =  and b) 1/ 8µ = . The result of  GS iterations 
is plotted with a solid line, while the result of  

4=itN
1=itN

1

GS 
iteration is plotted with a dotted line. c) The learning 
curves for NLMS, GSFAP, MGSFAP ( =itN and 

) and ideal FAP algorithms 
(

4
=

=itN
SNR 8,25630 == NdB ,8/ L1, =µ ). 

 
It can be seen in Figs. 1a and 1b  that fewer GS iterations 
are needed in order to obtain about the same error norm 
between the exact solution of  and the iterative one 
for 

( )nε
1µ =  than for 1/ 8µ = . Fig. 1c shows that the 

performance of the MGSFAP is improved with the 
number of GS iterations. It can be seen that MGSFAP 
performance closely approaches that of the ideal FAP 
when  for a small step size. Moreover, its 
performance is better than that of NLMS and GSFAP or 
other non-relaxed FAPs, (e.g. CGFAP [4]). We found that 

two GS iterations are enough for step size values close to 
1. Therefore, if a variable step size is used, the number of 
GS iterations can be varied accordingly. The 
regularization is a necessary part of the algorithm, 
especially in noisy conditions and double-talk scenarios. 
Often when there is near-end speech activity, SNR fall 
sharply well below 0 dB. We used a simple regularization 
method based on the approach described in [6]. The 
regularization parameter is 

4=itN

( )n x nδ ρ=  if 

( ) ( )x yn nρ γρ>

8

and  otherwise, where ( )20n yL nδ ρ=

=γ  and ( )x nρ and ( )y nρ  are the time-averaged 

powers of ( )x n and ( )y n respectively. It can be seen 
from Fig. 2 that MGSFAP with 4 GS iterations closely 
matches the performance of the ideal FAP algorithm in 
the double-talk scenario. Similar results were obtained for 
moderate SNR values, different filter lengths, and 
projection orders.  

8=256,4 = , 30 === NLNitdBSNR µ
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Next, we examined the performance of the MGSFAP-
SVF algorithm. The results are similar with those obtained 
in [8]. Fig. 3a shows the VAD decision where 1 indicates 
speech frames, while 0 indicates silence frames. The 
ERLE performance of the MGSFAP for SVF is lower in 
high volume level than in the normal volume level (Fig. 
3c). Also, it can be seen from Fig. 3b that the difference 
between the NLMS and MGSFAP for SVF in high 
volume level is rather small. These benefits were obtained 
at the cost of much increased complexity than that of the 
linear algorithms.     

 
Fig. 2. Comparison of the misalignment (in dB) provided 
by the ideal FAP and MGSFAP with time-varying 
regularization in a double-talk scenario for 

 ,1/4, . 
 
The linear system can be solved with any direct method 
(e.g. Cholesky or  factorization method). If the last 
method is applied the number of multiply and accumulate 
(MAC) operations is  and N 
divisions  in excess of  that are common to all FAP 
algorithms. The Cholesky method is more complicated 
having about the same number of MACs and divisions, 

LD

1



but it has N square root operations (cycles expensive). The 
MGSFAP algorithm ( ) needs 4=N 24 4 2N Nit  
MACs and 1 division, while the original FAP [2] needs 

 MACs and 5 divisions. 

2 4N = =itN
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2 3 1N N+ +
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Fig. 3. a) The speech signal, and the VAD decision; b) 
ERLE of the MGSFAP algorithm ( , ) on 
high (solid line) and normal (dotted line) volume levels; c) 
Improvement achieved over NLMS using a 5th order SVF 
filter, in the same situations.  

 
Fig. 4. Computational complexity between  the considered 
FAP algorithms (a division is counted as 25 MACs [4]). 
 
The CGFAP algorithm [4] needs  MACs 
and 1 division, whereas the GSFAP needs  
MACs and 1 division. As can be seen in Fig. 4, the 
MGSFAP compares favorably with the relaxed methods, 
and it is more efficient than them for . However, 
the original FAP [2] is unstable, while MGSFAP was 
stable in our simulations. If the stabilization procedure 
proposed in [2] is used then MGSFAP ( )  is more 
efficient for (typical situation for most voice 
applications). The complexity of the non-relaxed methods 
is smaller, but their performance is not very good for 
lower step sizes (Fig. 1c). The complexity of the 
MGSFAP-SVF algorithm is much higher. For example, in 
the reported experiment it needed approximately 2600 

MACs, while NLMS needed only 529 MACs, and 
MGSFAP 559 MACs. 

N

itN

 
4. CONCLUSIONS 

 
We have proposed the modified Gauss-Seidel fast affine 
projection algorithm and extended it for simplified 
Volterra filters. We have demonstrated that the new 
algorithm has a fast convergence, low complexity and 
behaves well in a double-talk scenario. Therefore, the 
proposed algorithms represent interesting options for 
practical acoustic echo cancellation systems.    
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