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ABSTRACT
In this paper, we first propose lightweight deep CNN mod-
els, capable of effectively operating on-drone, in order to
address various classification problems, i.e. crowd, foot-
ball player, and bicycle detection, in the context of media
coverage of specific sport events by drones with increased
decisional autonomy. Subsequently, we propose a regular-
ization technique, namely Discriminant Analysis regular-
ization, aiming to enhance the generalization ability of the
proposed models. The experimental evaluation validates
the enhanced performance of the proposed regularizer.

Index Terms— Discriminant Analysis Regularization,
Convolutional Neural Networks, Drones, Deep Learning.

1. INTRODUCTION

During the recent years, Deep learning algorithms, [1, 2],
and principally the deep Convolutional Neural Networks
(CNN) have been established as one of the most promising
avenues of research in computer vision, providing out-
standing results in a plethora of computer vision tasks,
[3, 4, 5, 6, 7, 8]. The major reasons behind their success lie
in the Graphics Processing Units (GPUs) computational
power and affordability, as well as in the availability of
large annotated datasets.
Over the few recent years drones, have powerfully
emerged in the media and entertainment industry, being
applied in a wide spectrum of applications, ranging from
entertainment to visual surveillance, rescue within the
context of natural disasters [9], and medical emergencies
[10]. Their capability of capturing shots of inaccessi-
ble places, as well as spectacular aerial shots, gradually
displaces prior practices in media production. A major
issue associated with the rise of drones is the demand of
developing efficient models for various computer vision
tasks, capable of addressing the additional challenges of
drone-captured images (that is, small object size, occlu-
sion, etc.), and also capable of running on-drone, that is
with limited processing power.
The objective of this work is to propose a regularization
method in order to enhance the generalization ability
of the lightweight models, proposed to address various
tasks involved in the context of media coverage of certain
sport events (i.e. football match, bicycle race) by drones.

That is, we develop lightweight models, capable of run-
ning on-drone, for crowd (addresing also the demand of
safety), football player, and bicycle detection. Our goal is
to provide semantic heatmaps by e.g. predicting for each
location within the captured scene the crowd presence.
That is, we train models with RGB input of size e.g.
128 × 128, and then high resolution test images are fed to
the network, and for every window 128 × 128, we com-
pute the output of the network at the last convolutional
layer. We note that is of utmost importance for the drone
to be able to handle high resolution images, since the
objects in drone-captured scenes are of small size, and
thus image resizing in order to render the deployment on-
drone feasible, would further shrink them, making their
detection even impossible. The above procedure finds also
application in the camera control problem, [11], where the
semantic heatmaps for each of the considered tasks, aim
to assist the algorithm for controlling the camera of the
drone for cinematography tasks by sending error signals.
Subsequently, we propose a novel regularizer in order to
control over-fitting and enhance the performance of the
proposed models.
Generally, addressing the problem of over-fitting, which
arises due to their large capacity, is a central issue associ-
ated with the deep neural models. During the past years,
several regularization schemes have been proposed in
order to prevent over-fitting in neural networks, ranging
from common regularization methods, like L1/L2 regular-
ization which penalize large weights during the network
optimization, and early stopping of the training proce-
dure, to Dropout [12] where for each training sample, a
randomly selected subset of the activations is zeroed in
each epoch, and a generalization of it, Dropconncet [13]
which instead of activations, sets a randomly selected
subset of weights within the network to zero. From a
quite different viewpoint, multitask-learning [14] consti-
tutes also a way of improving the generalization ability
of a model. For example, in [15] the authors introduced
techniques developed in semi-supervised learning in the
deep learning domain. That is, they combined an unsu-
pervised regularizer with a supervised learner to perform
semi-supervised learning. In this work, we propose a
new regularized training method, insipired by the Linear
Discriminant Analysis (LDA) [16] algorithm, namely Dis-



criminant Analysis (DA) regularization, which aims to
enhance the discriminative power of the proposed models
by forcing the training samples belonging to the same
class to come closer to their class centroid.
The rest of the paper is organized as follows: In Sec-
tion 2, we present the proposed regularization method.
In Section 3 we provide the implementation details and
the experimental evaluation of the proposed method, and
finally, conclusions are drawn in Section 4.

2. PROPOSED METHOD

In this work, we propose a novel regularized training
method, motivated by the LDA method, that aims at best
separating training samples of different classes, by pro-
jecting them into a new lower dimensional space, that
maximizes the between-class separability while minimiz-
ing their within-class variability. Specifically, in the pro-
posed scheme, apart from the classification loss which
preserves the between class separability, we introduce an
additional regularization loss aiming to bring the train-
ing samples of the same class closer to the class centroid.
Hence, in this way, the so-called DA regularizer enhances
the discriminative power of the model.
Thus, for an input space X ⊆ <d and an output space F ⊆
<q, we denote as φ(· ;W) : X → F a deep neural network
with NL ∈ N layers, and set of weightsW = {W1, . . . ,WNL },
where Wl are the weights of a specific layer l. We also de-
note the set of weights up to layer l asWl = {W1, . . . ,Wl}.
Then, the output of layer l for a given input xi is com-
puted as follows: φ(xi ;Wl) = σl

(
Wl · φ(xi ;Wl−1) + bl

)
,

where σl(·) is the activation function of layer l, bl the bias
term, φ(xi ;Wl−1) the output of the previous layer, and ·
denotes a linear operation (e.g. matrix multiplication or
convolution). Hence, we consider a set DN = {x1, . . . , xN}

of training samples on X, and their corresponding repre-
sentations, φ(xi ;Wl), at the layer l. We also consider the
set Zi = {xk, k = 1, . . . ,Ki} of Ki samples belonging to the
same class with the i-th sample.
Then, the objective of the DA regularizer is defined as
follows:

min
Wl
JDA = min

Wl

N∑
i=1

‖φ(xi ;Wl) − µi‖
2
2, (1)

where µi =
1
|Zi|

∑
x j∈Z

i

φ(x j ;Wl).

Optimizing objective (1) lets the network learn parameters
such that data samples belonging to the same class are
closely mapped to their class centroid, enhancing the dis-
criminative power of the model.
The proposed regularizer can be attached to one or mul-
tiple neural layers. Thus, for a deep neural model of
NL layers, the total regularization loss is formulated as:

Lreg_total =

NL∑
l=1

λlLregl , where Lregl is the regularization loss,

as defined in (1), for a certain layer, l, while the parameter
λl ∈ [0, 1] controls the relative importance of the specific
regularization loss. Then, the total loss in the regularized
training scheme is computed by summing the classifica-
tion loss and the total regularization loss. Either hinge
loss or softmax loss can be utilized as classifiers. In our
experiments we use the softmax classifier. We use gra-
dient descent to solve the above optimization problem. It
is, finally, noted that the proposed regularizer can be im-
plemented over the entire dataset, for the centroids of all
the samples belonging to one class, as well as in terms of
mini-batch training. In our experiments we implement it
in terms of mini-batch training.

3. EXPERIMENTS

In this section, we present the experiments performed
in order to evaluate the proposed regularization method.
Throughout this work, we use Test Accuracy (Classifica-
tion Accuracy) to evaluate the proposed regularizer. Each
experiment is repeated five times and we report the mean
value and the standard deviation, considering the maxi-
mum value of Test Accuracy for each experiment. The
probabilistic factor is the random weight initialization.
The proposed CNN models serve as baseline for the pro-
posed regularization method. We also compare the pro-
posed regularizer with the common L1 and L2 regularizers.
In the following, we describe the utilized CNN architec-
ture, the utilized datasets, and the implementation details
of the proposed method, and finally we present the vali-
dation results.

3.1. CNN models and Discussion on Speed

The proposed CNN model contains six convolutional lay-
ers. Since the input images of the utilized datasets are of
various sizes (that is, 128 × 128, 64 × 64, and 32 × 32), we
use appropriate pooling for each of the three cases. That
is, for the first case, the network accepts RGB images
of size 128 × 128 × 3. The output of the last convolu-
tional layer is fed to a softmax layer which produces a
distribution over the 2 classes. Each convolutional layer
except for the last one is followed by a Parametric Rec-
tified Linear Unit (PReLU) activation layer which learns
the parameters of the rectifiers, since it has been proven to
enhance the classification results [17]. Max-pooling layers
follow the first and the fifth convolutional layers, while
a response-normalization layer is utilized after the first
pooling layer. A Dropout layer [18] with probability 0.5
follows the fifth convolutional layer. An overview of the
proposed model is illustrated in Fig. 1. In the second



Model Input Jetson TX2 GeForce GTX 1080
VGG 224 × 224 9.36 89.52

Proposed 224 × 224 49.7 416.66
Proposed 512 × 512 13.1 99.4
Proposed 1024 × 1024 2.1 23.45

Table 1: Speed (FPS)
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Fig. 1: Overview of the proposed CNN architecture

case, where the input size is 64× 64, we remove the pool-
ing layer which follows the 5th convolutional layer, while
in the third case where the inut size is 32 × 32, we also
remove the first pooling layer from the initially described
architecture.
We test the proposed model for the crowd detection task
on a GeForce GTX 1080 GPU for various input sizes, and
we compare it in terms of frames per second (FPS) with a
common baseline model (i.e. VGG-16 [19]) for the latter’s
fixed input. Since the deployment of the detectors will
be done on a drone, we also test the performance on a
state of the art low-power GPU, that is an NVIDIA Jet-
son TX2 module with 8GB of memory. The results are
presented in Table 1. As we can see, the proposed model
operates at 49.7 fps for input of size 224 × 224, against
the baseline model which runs at 9.36 fps for the same
fixed input on the Jetson TX2 module, whereas it runs at
13.1 fps for input of size 512 × 512, and at 2.1 fps for in-
put of size 1024 × 1024. We should also note that even if
we discard the fully connected layers of the VGG model,
and use only the fully-convolutional portion, the proposed
model is considerably faster. For example, the modified
fully convolutional VGG model runs at 28.16 fps for in-
put 512 × 512 on the GTX 1080 (against 99.4 fps of the
proposed one), while for an input of size 1024 × 1024 it is
out of memory even in the GTX 1080.

3.2. Datasets

In order to evaluate the performance of the proposed DA
regularizer we conduct experiments on three datasets, con-
structed for Crowd, Football Player, and Bicycle detection.
The so-called Crowd-Drone dataset contains 11,840 train
images of crowded scenes and non-crowded scenes. We
use 2,368 images of them as test set. Input images are of
size 128 × 128. The second dataset, constructed for foot-
ball player detection consists of 98,000 train images of
football players and non-football players, and a test set of

10,000 images. Input images are of size 32 × 32. Finally,
the third dataset, namely Bicycles, contains 51,200 equally
distributed train images of bicycles (bicycle with bicyclist)
and non-bicycles, and a test set of 10,000 images. Input
images are of size 64 × 64.

3.3. Implementation Details

The proposed CNN models were implemented using the
Caffe Deep Learning framework [20]. The learning rate is
set to 10−5, and the batch size is set to 64. The weight de-
cay is 0.0005, and the momentum is 0.9. All the models
are trained on an NVIDIA GeForce GTX 1080 with 8GB
of GPU memory, for 100 epochs.
As mentioned before, the proposed regularizer can be ap-
plied on individual layers, as well as on multiple layers.
In our experiments, we apply the regularizer on all the
convolutional layers. To do this, instead of using directly
the high-dimensional features from a specific convolu-
tional layer, we attach an additional pooling layer on each
of these layers, namely Maximum Activations of Convo-
lutions (MAC)[21] layer that implements the max-pooling
operation over the height and width of the output volume,
for each of the 128 feature maps of the CONV5 layer, cor-
respondingly of the 256 feature maps of the CONV4, and
so on. That is, the MAC layer, for example on CONV5
outputs a 128-d vector for each input image.
The regularization loss is initially significantly larger than
the softmax one. Thus, in order to control the relative
importance of the contributed losses, we first set the reg-
ularization loss parameter, λ, to 0.0001, and we fixed it
to 0.01 at the 20 epochs up to the final epoch, for all the
convolutional layers.

3.4. Experimental Results

In Table 2 we present the performance of the proposed
regularizer against the softmax-only approach, in terms
of Test Accuracy. We also compare the regularizer with
the standard L1 and L2 regularization schemes. Best
results are printed in bold. From the demonstrated re-
sults, we can see that the proposed regularizer consid-
erably improves the classification performance, while it is
also superior over the L1 and L2 regularizers, which either
slightly improve the results or they harm the performance
(e.g. L1 regularizer on Bicycles dataset).

Training Approach Crowd-Drone Football Player Bicycles
Softmax 0.9405 ± 0.0079 0.8850 ± 0.0051 0.9119 ± 0.004

Softmax & L1 0.9435 ± 0.009 0.8834 ± 0.005 0.8991 ± 0.0079
Softmax & L2 0.9422 ± 0.005 0.8856 ± 0.0083 0.9134 ± 0.0021
Softmax & DA 0.9546 ± 0.0061 0.9128 ± 0.003 0.9423 ± 0.0045

Table 2: Test Accuracy

Furthermore, as we have previously mentioned, the
hinge loss could also be utilized for the classification task,



(a) Representations at 1 epoch of Softmax
training

(b) Representations at 10 epochs of Soft-
max training

(c) Representations at 20 epochs of Soft-
max training

(d) Representations at 1 epoch of DA train-
ing

(e) Representations at 10 epochs of DA
training

(f) Representations at 20 epochs of DA
training

Fig. 2: Visualization by t-SNE for the Crowd-Drone dataset

instead of the softmax classifier. To this aim, we also per-
form indicative experiments on the Crowd-Drone dataset
using the hinge loss instead of the softmax one, and we
apply the proposed DA regularizer. Thus, the only hinge
loss training achieves Test Accuracy 0.9488 ± 0.0009,
while the hinge loss with the DA regularizer 0.9584 ±
0.003. That is, we can indeed achieve improved results
with the proposed regularizer using the hinge loss as the
classification objective.
Subsequently, we use the t-distributed stochastic neighbor
embedding (t-SNE) [22] algorithm, a non-parametric tech-
nique for dimensionality reduction, widely used for data
visualization, to visualize the 128-d feature representa-
tions generated by the CONV5 layer of the proposed DA
and the baseline softmax-only models, for 100 crowded
and 100 non-crowded images. Thus, in 2a, 2b, and 2c
of Fig. 2 we illustrate the 2-d t-SNE embedding of the
CONV5 representations at 1 epoch, the t-SNE embedding
of the representations at 10 epochs, and at 20 epochs of
softmax-only training, respectively. In 2d, 2e, and 2f of
the same figure we provide the corresponding DA rep-
resentations. As we can observe, while the main sof-
max classifier aims at separating the samples of different
classes, the DA regularizer seeks to bring the training
samples’ representations of the same class together. That

is, the proposed regularizer induces the training samples’
representations to shrink, while also preserving discrimi-
native power.

4. CONCLUSIONS

In this paper, we first proposed lightweight deep CNN
models, for various recognition tasks, involved in the con-
text of media coverage of specific sport events by multiple
drones. That is, we proposed models for crowd, fooball
player, and bicycle detection. Subsequently, we proposed a
novel Discriminant Analysis regularization method, aim-
ing to enhance the generalization ability of the proposed
models. The experimental evaluation validates the effenc-
tiveness of the proposed regularizer.
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ticular object retrieval with integral max-pooling of
cnn activations,’’ CoRR, vol. abs/1511.05879, 2015.

[22] Laurens van der Maaten and Geoffrey Hinton, ‘‘Visu-
alizing data using t-sne,’’ Journal of Machine Learn-
ing Research, vol. 9, no. Nov, pp. 2579–2605, 2008.


	 INTRODUCTION
	 PROPOSED METHOD
	 EXPERIMENTS
	 CNN models and Discussion on Speed
	 Datasets
	 Implementation Details
	 Experimental Results

	 CONCLUSIONS
	 References

