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ABSTRACT

Audiovisual coverage of sports events using Unmanned
Aerial Vehicles (UAVs) is becoming increasingly popular.
Intelligent audiovisual (A/V) shooting tools, accurately iden-
tifying the 2D region of cinematographic attention (RoCA)
depicting rapidly moving target ensembles and automatically
controlling the UAVs/cameras through visual content anal-
ysis, are thus needed. A novel algorithmic pipeline is pro-
posed, implementing computational UAV cinematography
for assisting sports coverage, based on semantic, human-
centered visual analysis. Athlete and ball detection / tracking
results as well as their spatial distribution on the image plane
are the semantic features extracted from UAV video feed and
exploited for RoCA extraction, based solely on present and
past target detections. A PID controller visually controlling a
real or virtual camera to track the RoCA and produce aesthet-
ically pleasing shots, without exploiting 3D location-related
information, is employed. The proposed method is evaluated
on actual UAV footage from soccer matches and promising
results are obtained.

Index Terms— autonomous UAVs, cinematography,
sports broadcasting, human-centered visual analysis, PID
controller

1. INTRODUCTION

As employing camera-equipped Unmanned Aerial Vehicles
(UAV5s) for audiovisual coverage of sports events tends to be-
come mainstream, new cinematography challenges arise that
need to be properly handled [1, 2]. Such a case is the au-
tomatic region-of-cinematographic-attention (RoCA) identi-
fication for guiding autonomous UAV camera framing, mim-
icking the way a human camera operator would do. Most re-
search works implementing camera control based on compu-
tational aesthetics study low-level video features, like texture,
saturation and hue [3, 4], while overlooking the influence of
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higher-level visual semantics (e.g., athlete location and fram-
ing on the image plane), which can be acquired through vi-
sual scene (stadium) and targets (athletes) analysis, providing
information concerning the visual attention of a professional
cameraman when shooting. Especially for sports shooting,
such a high-level visual analysis is crucial, since there usually
are multiple moving targets, e.g., athletes. Only by consider-
ing them to be parts of one unified RoCA and by modeling its
global structural motion, can the UAV camera be controlled
to best capture the complex game dynamics.

An autonomous quadcopter capable of capturing frontal
images of moving targets by selecting the best vantage points
is presented in [S]. A Partially Observable Markov Decision
Process (POMDP) is employed for estimating target motion
intentions and deciding between moving or staying still, thus
minimizing camera motion, while it always faces the target.
High-level cinematographic commands concerning the shots
to be captured and the desired object positioning are provided
in [6], where UAV navigation is performed by implementing
smooth transitions between the requested shots, while simul-
taneously tracking the targets.

Fixed cameras are employed in [7] for tracking basketball
players along with the ball and estimating player centroid.
Path planning and control are then performed by utilizing a
virtual camera, thus proposing a hybrid, low-latency system
incorporating knowledge about future events. Future regions-
of-interest are estimated in [8], based on the stochastic field
representing the motion trends of soccer players. The robust-
ness of this spatiotemporal video content selection method is
also evaluated with moving cameras, and their motion control
is demonstrated to mimic the one of a cameraman.

Aesthetics criteria, e.g., player spatial distribution, ball
visibility and game flow are taken into consideration in the
automated director assistance method proposed in [9]. The
camera capturing the most visually appealing shots is iden-
tified and personalized directorial shooting styles are learnt,
while various visual semantics, e.g., intensity of activity, ob-
ject detection and tracking, object size, width, height, orien-
tation and location, as well as motion vectors, are some of the
features employed by the best-view selection system [10].

The methods described above utilize future information
in order to perform camera control (e.g., by buffering video



frames) and focus on capturing specific targets/objects. On
the contrary, the proposed pipeline implements automatic
camera control and can be employed both during production
and post-production stages, as it relies only on present and
past visual information, in order to estimate a RoCA.

In cases of target ensembles, like sports games, objective
definition of the RoCA and proper framing are rather diffi-
cult. Tracking the ball and focusing on its trajectory in order
to define the RoCA over the game field view, would be one
solution. Human-centered visual analysis, i.e., player detec-
tion/tracking and 2D spatial player distribution, for calculat-
ing the region enclosing the majority of them, while omit-
ting outliers, would be another, in case ball detections are not
available.

The proposed pipeline employs the combination of ball-
/player-related information and aesthetics criteria for esti-
mating the parameters determining the shots to be produced.
Moreover, instead of robotic cameras, employed by the vast
majority of the related approaches, the proposed pipeline in-
troduces the use of autonomous UAVs for sports coverage,
drastically reducing (post-)production cost, since very low-
cost UAVs can be easily found and no cameramen or UAV
operators are required - the vehicle may simply hover over
the field sideline, with its camera set to the widest possible
field of view.

In brief, the proposed pipeline consists of three stages,
and the only input required is a UAV video frame. At first,
player and ball detection/tracking are performed, with the
resulting regions-of-interest (ROIs) subsequently used by
the RoCA estimation component. The latter calculates the
video frame region of the most interest, employing the rule-
of-thirds [11] while also taking ROI motion direction into
account, and feeds a special PID controller designed for cin-
ematographic camera control [12] with the estimated RoCA.
Finally, the PID controller guids a real camera gimbal or a vir-
tual camera appropriately, aiming to keep the RoCA focused
and centered. Virtual camera control is simply and efficiently
implemented by suitably cropping the appropriate region of
the original video frame. An informative and aesthetically
pleasing (real or virtual) output video frame is thus produced.

The main novelties introduced by the proposed pipeline
could be summarized as follows: a) framing based on a RoCA
and not a specific object/target (e.g., game player, ball), b)
exploitation of present and past information only in order to
form the RoCA trajectory (no knowledge of the future re-
quired), and c) camera control based solely on 2D visual in-
formation - no usage of 3D location-related information con-
cerning the camera or the target.

2. A COMPUTATIONAL UAV CINEMATOGRAPHY
PIPELINE

The proposed pipeline operates on a UAV camera video
stream, by extracting high-level player-related information

and controlling a virtual pan-tilt-zoom camera, so that the
most interesting RoCA of the entire field view is always
properly framed and visualized. In order to operate appropri-
ately, the method requires high-resolution, wide-angle long
shots of the field. Modern 2K and 4K video cameras are
thus considered ideal, since they have high enough resolution
to allow the proposed algorithm pipeline to produce high-
quality virtual camera video frames, being spatially cropped
segments of the original video frames. The execution pipeline
presented in Fig. 1, is thoroughly described in the following
paragraphs.

To begin with, player and ball detection/tracking have to
be performed, using any player/ball detector (e.g., [13]) and
2D visual tracker (e.g., [14]), which normally output image
ROIs defined by their top-left and bottom-right corners, ex-
pressed in pixel coordinates. The simplest solution for target
detection and localization is to use an existing pedestrian/ball
detector, e.g., [15] based on CNNs, possibly finetuned with
case-specific image data sets. Semantic information of this
sort can nowadays be relied upon, thanks to advances in deep
learning.

Let us denote by f; the UAV video frame being processed
at time instance ¢, its ball ROI by Ri; = [Zomins Ybmins
Thmazs Yomaz) . and its player ROIs by Ry ; = [Tmin, Ymin,
Tmaz, Ymaz) L, = 1,..., N, with N denoting the players in-
volved in the game. The mean distance dz; ; of player i from
his n = 3 nearest neighbors, along the x axis, is calculated.
Afterwards, having sorted player ROIs in ascending linear or-
der along the « direction, the Euclidean distance of R, ; from
R+,i+1 regarded as 1D points, is calculated, and two checks
are performed: a) if it is greater than the mean player ROI size
in this direction (i.e., mean width in x direction) and b) if it
is greater than the mean distance dx; ;. In case the two pre-
vious tests succeed, the player is considered an outlier [16],
thus being omitted, and the previous steps are repeated for the
next player, until the first one to be included in the RoCA is
found. The entire procedure is subsequently performed along
the y axis. This way, a bounding box RoC A; enclosing the
RoCA at time instance t is calculated, containing the players
distributed in the most serried way. However, if the obtained
RoCA is smaller in size than a user-specified percentage of
the original video frame, its size is adjusted accordingly. This
way, extreme close-up shots are avoided.

If ball ROI Ry, information is available, it is repre-
sented by its middle point cRy; = [cby, Cp,]" and its mo-
tion direction along axes z,y is estimated. Representing
player ROIs by their center point, as well, the ROI centroid
cR; = [cz, ¢y]T is calculated along with its direction of mo-
tion on both axes x,y. After smoothing cR;, by applying a
Gaussian filter of temporal length L.r = 3 video frames on
its coordinates, RoC A; is estimated in such a way that camera
fixation point fp; = fry*cRp;+(1— fry)*cRy, fry, = 0.75
always constitutes one of the four intersection points arising
by the cinematographic rule-of-thirds. In case ball detection
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Fig. 1. Proposed method pipeline

is missing at some time instance ¢, the fixation point is calcu-
lated based on the last detected ball ROI, and fg;, weight is
assigned to cR;.

More specifically, by exploiting motion direction infor-
mation and RoC A, size (previously calculated), its bounding
box is formed around fp; so that % of the RoCA size always
lie towards the ball motion direction (or the players’ if ball
detection is not available) and only % towards the opposite di-
rection. RoC'A; coordinates are also filtered by a Gaussian
window of temporal length L z,c4 = 5 video frames, so that
a pleasing trajectory, without abrupt movements and jumps,
can be obtained. Finally, its aspect ratio is estimated, and the
smallest modifications required for retaining 16 : 9 ratio are
performed. It is then fed to the PID controller [12] that is re-
sponsible for controlling the pan, tilt and zoom of the virtual
camera appropriately, so that RoC' A;: a) always encloses at
least a user-specified percentage of the original video frame,
b) always covers a user-specified percentage of the produced
virtual camera video frame, i.e., a specific cinematographic
shot type is captured, c) is appropriately positioned in the vir-
tual camera video frame, based on user preferences.

The PID controller proposed in [12] is employed here as
an image-based virtual camera control system implement-
ing a number of the previously identified cinematographic
shot types [17, 18, 19, 20], requiring information concern-
ing neither the UAV, nor the target 3D position. Several
target-tracking camera rotation types can be defined as a set
of requirements relating 2D visual information and camera
orientation. By exploiting these requirements, this purely
vision-based controller can instantly control virtual camera
pan and tilt, thus effectively executing a target-tracking shot
based solely on 2D visual information. The controller keeps
the target ROCA properly positioned within the resulting vir-
tual video frame and framed according to the desired shot
type [11], by appropriately modifying the virtual camera
zoom. Either central composition or the rule of thirds can
be followed for RoCA framing [1]. Unless otherwise stated,
central composition is always used in this work.

Fig. 2 presents indicative results obtained through this
pipeline. To elaborate, Fig. 2(a) depicts the original UAV
video frames with the ball bounding box painted in yellow,
the player bounding boxes in red, the enclosing RoCA in
green, and the virtual video frame window estimated by the
PID controller in blue, while the resulting virtual video frame
is shown in Fig. 2(b). It can be easily noticed that the players
positioned further apart were considered outliers and were
not included in the estimated RoCA.

3. EXPERIMENTAL EVALUATION

Performance assessment of the proposed pipeline was per-
formed during post-production, employing non-professional
UAV footage of a soccer game as input data, captured at a
resolution of 1280 x 720 pixels. A video clip of 4335 video
frames was selected for presenting evaluation results. Ground
truth ROIs for the players and the ball were manually anno-
tated, while a professional cameraman was asked to indicate
a RoCA ground truth sequence. Player ROIs were also auto-
matically extracted, with the aid of YOLO v3 detector [15].

The proposed pipeline, as well as method [7] and espe-
cially virtual camera handling, were both implemented in
Python. Comparisons of the obtained evaluation results with
ground truth and automatically detected player ROIs are pro-
vided. Moreover, the RoCAs estimated by the two methods
are compared to the human expert-defined sequences.

The following user-defined parameters were employed.
Central composition and a virtual video frame coverage per-
centage of 70%, with a minimum RoCA size equal to % of the
original video frame, i.e., 427 x 240 pixels were the parame-
ters concerning RoCA formation and PID control. The Gaus-
sian window sizes adopted were L.r = 3, Lroc4 = 5, both
selected by visually inspecting the resulting virtual videos.
The virtual camera fixation point fp; was positioned in be-
tween the ball ROI middle point cRy; and player centroid
cRy, with cRy; weight equal to fr, = 0.75 and cR; weight
fry = 1—fRrp, = 0.25 on axis z, so that the virtual camera can
follow horizontal ball movement. In the contrary, fr; = 0.25
and fr, = 0.75 on the y axis, thus minimizing the influence
of vertical ball position to virtual camera movement and pre-
venting the latter from following ball bounce.

Fig. 3 presents the percentage of the original UAV video
frame region characterized as ROCA by the human expert, the
proposed pipeline and method [7], employing both ground
truth (gt) player ROIs and YOLO detections. Contrary
to the [7]-created RoCA, the RoCA produced by the pro-
posed pipeline does not appear to differ significantly from the
ground truth. This, can be also verified by Table 1, presenting
mean coverage percentage of the original video frame by the
RoCAs produced in all the aforementioned cases along with
standard deviation values, as the mean coverage achieved
by the proposed pipeline is much closer to the ground truth
RoCA coverage. In addition, the reported standard deviation
values highlight the robustness of the proposed method, as
they are dramatically lower than the ones estimated for [7].

With a mean RoCA coverage of the original video frame
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Fig. 2. (a) UAV original camera-captured video frame, (b) virtual camera video frame — yellow box: ball, red boxes: players,
green box: estimated RoCA, blue box: PID controller framing window
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Fig. 3. Original video frame coverage (%) by RoCA — dashed
dark green line: proposed with ground truth player ROIs, dot-
ted cyan line: proposed with YOLO detected ROIs, dashed
deep purple line: [7] with ground truth player ROIs, dotted
magenta line: [7] with YOLO detected ROIs, solid red line:
human expert ground truth

equal to 12.16%, according to the human expert-created
ground truth RoCA sequence, the vast majority of the video
frames having RoCAs extending only in 10 - 18% of their im-
age and no single video frame having a RoCA covering more

Table 1. Mean RoCA coverage of the original video frames
and standard deviation results

| | mean coverage & std (%) |

Proposed - gt ROIs 11.57+0.80
Proposed - YOLO ROIs 11.51£0.79
[7] - gt ROIs 19.65+6.73
[7] - YOLO ROIs 19.80+7.24
Human expert 12.16+2.00

than 20% of the entire image, it becomes obvious that quite a

lot of inactive visual 2D space was originally captured, which
is reasonable since the UAV was capturing long-shots.

Table 2. Average Intersection over Union results

| | mean IoU |
Proposed - gt ROIs 54.30%
Proposed - YOLO ROIs | 54.39%
[7] - gt ROIs 44.21%
[7] - YOLO ROIs 43.23%

Another metric employed for the evaluation of the ob-
tained RoCAs, is their average instersection over union (IoU)
with the ground truth. As shown in Table 2, the proposed
pipeline outperforms [7] in terms of IoU by approximately
10%. Additionally, the results obtained with ground truth and
YOLO-detected player ROIs for both methods do not differ
significantly, which is due to YOLO effectiveness.

4. CONCLUSIONS

In this paper, a pipeline for computational cinematography
in UAV sports coverage, applicable both during production
and post-production, based on semantic, human-centered vi-
sual analysis was proposed. High-level semantic features, like
player/ball detection/tracking results (ROIs), as well as player
spatial distribution and motion direction, are extracted from
an aerial video feed of a single UAV and, after performing vi-
sual analysis, the RoCA is extracted using the rule-of-thirds,
based solely on present and past information. The RoCA is
then operated upon by a suitable PID controller, which can
visually control a real or virtual camera to track the target and
produce salient video shots, keeping it properly framed by ap-
propriately cropping the original video frames, without using
3D location-related information. Promising results were ob-
tained by the objective evaluation of the proposed pipeline,
which outperformed a competing method.
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