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ABSTRACT

The use of camera-equipped Unmanned Aerial Vehicles
(UAVs, or “drones”) for a wide range of aerial video cap-
turing applications, including media production, surveillance,
search and rescue operations, etc., has exploded in recent
years. Technological progress has led to commercially avail-
able UAVs with a degree of cognitive autonomy and per-
ceptual capabilities, such as automated, on-line detection
and tracking of target objects upon the captured footage.
However, the limited computational hardware, the possi-
bly high camera-to-target distance and the fact that both the
UAV/camera and the target(s) are moving, makes it chal-
lenging to achieve both high accuracy and stable real-time
performance. In this paper, the current state-of-the-art on
real-time object detection/tracking is overviewed. Addition-
ally, a relevant, modular implementation suitable for on-drone
execution (running on top of the popular Robot Operating
System) is presented and empirically evaluated on a number
of relevant datasets. The results indicate that a sophisticated,
neural network-based detection and tracking system can be
deployed at real-time even on embedded devices.

Index Terms— Drone video analysis, object detection,
object tracking, real-time computing, Robot Operating Sys-
tem

1. INTRODUCTION

The popularization of commercial, battery-powered, camera-
equipped, Vertical Take-off and Landing (VTOL) Unmanned
Aerial Vehicles (UAVs, or “drones”) during the past decade,
has significantly affected aerial video capturing operations, in
varying domains such as media production [1-8], search and
rescue, surveillance, inspection, etc. UAVs are affordable, ag-
ile and flexible, having, for instance, the ability to hover above
points interests and access narrow spaces.

Traditional UAVs are teleoperated fully manually, but
technological progress has led to the commercial release of
drones with a significant degree of cognitive autonomy, re-
lying on advanced sensors, embedded computing boards and
artificial intelligence/robotics algorithms. An illuminating
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example would be current high-end cinematography UAVs,
such as the DJI Phantom IV Pro, or the more recent Skydio
R1, which already provide a number of autonomous capa-
bilities for both safe flying and filming, such as obstacle
detection and avoidance, automated landing, physical target
following/target orbiting enabled by visual target tracking
(for low-speed, manually pre-selected targets), as well as
automatic central composition framing, i.e., continuously ro-
tating the camera so as to always keep the pre-selected target
properly framed at the center.

Clearly, near-future holds the promise of fully autonomous
UAVs that only require high-level supervision from a human
operator. Automated video analysis [9-14], such as on-line
video detection and tracking of targets, lies at the heart of
these developments. However, the limited computational
hardware, the possibly high camera-to-target distance and the
fact that both the UAV/camera and the target(s) are moving,
makes it difficult to achieve both accuracy and stable real-
time performance in these tasks. Relevant state-of-the-art
algorithms, e.g., based on deep neural networks, are im-
pressively precise and optimized for parallel execution on
General-Purpose Graphical Processing Units (GP-GPUs).
Such high-performance hardware has recently been commer-
cialized in small, power-efficient form factor for embedded
systems, ideal for on-board inclusion in UAVs!. However,
current processing power and energy consumption restric-
tions limit what is possible on a UAV, in comparison to
desktop computers.

2D visual target detection is necessary for localizing the
desired target’s image (i.e., the Region-of-Interest, or ROI)
on a video frame. Additionally, visual target detectors can be
exploited for identifying a possible obstacle or an on-ground
UAV landing site. The extracted ROl is a rectangle (described
in pixel coordinates) that encloses the target’s image. In cur-
rent commercially available drones, similar methods are al-
ready employed to better adjust a manually pre-specified ROI,
based on the video content. In the future, more automated
UAVs are expected to rely solely on automatic visual target
detection.

2D visual target tracking tracks a pre-specified ROI on
the consecutive frames of a video sequence, by taking advan-
tage of spatiotemporal locality constraints, and updates the
ROI pixel coordinates at each video frame. Although track-
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ing can be performed by simply re-detecting the target at each
video frame, a better approach is to periodically re-initialize
the ROI using a 2D visual target detector and employ a sep-
arate visual tracker for the intermediate intervals. In general,
correlation-based trackers are suitable for real-time operation
in embedded computing environments [15].

In this paper, the current state-of-the-art on real-time ob-
ject detection/tracking is overviewed. Additionally, a rele-
vant, modular implementation suitable for on-drone execution
(running on top of the popular Robot Operating System) is
presented and empirically evaluated on a number of datasets.

2. REAL-TIME OBJECT DETECTION & TRACKING

In the following subsections we provide an overview of re-
cently proposed solutions to the problems of visual object de-
tection and tracking, focusing on the performance of these
solutions and their applicability on embedded systems such
as the ones studied in this work.

2.1. Object Detection

Deep Convolutional Neural Networks (CNNs) have been ex-
celling continuously on various challenging visual analysis
tasks and competitions, including the ILSVRC object recog-
nition and detection challenges [16], and the PASCAL VOC
challenges [17]. Deep models with parameter-heavy archi-
tectures have been successfully trained and deployed on such
tasks, partly due to the availability of large collections of an-
notated datasets, such as the ImageNet or COCO datasets
[18], and partly due to the continuous development of in-
creasingly more powerful GPUs. However, the power con-
sumption and sheer size of such models inhibit their use on
mobile and embedded systems, as the GPUs available for de-
ployment on such systems are inadequate in terms of compu-
tational power, thus severely slowing down the performance
of large models and rendering real-time deployment almost
impossible. Moreover, memory constraints prohibit the di-
rect deployment of large models even when real-time require-
ments can be relaxed. On the other hand, applications related
to visual analysis tasks have become progressively more pop-
ular, increasing the demand of deployment of large CNNs on
mobile devices.

One approach to achieving real-time performance with
restricted computational hardware is to use one-stage deep
neural detectors, structured around the concept of “anchors”.
These detectors, such as Single-Shot Detector (SSD) [19] and
You Only Look Once (YOLO) [20], are based on the notion
of a convolutional Region Proposal Network (RPN). They si-
multaneously regress the pixel coordinates of visible object
ROIs (in the form of spatial offsets from the pre-defined an-
chors) and assign them class labels. Although they are suit-
able for operating on-board a UAV, they typically lag in accu-
racy relative to slower two-stage, region-based detectors, such

as Faster R-CNN [21]. Advances such as the Focal Loss [22]
have been proposed to mitigate this issue, with limited suc-
cess.

This has lead recent research towards the optimization of
heavyweight CNN architectures for deployment on devices
with limited resources. In [23], several object classification
and detection algorithms are studied and their performance
on various mobile devices, including a Jetson TX2 platform,
is compared in terms of speed. The latency versus throughput
trade-off is evaluated for different batch sizes and it is shown
that using batch sizes larger than 1 is more computationally
efficient. In real-time applications, however, images must be
processed one-by-one sequentially as they are captured.

In [24], MobileNets are pitted against other popular fea-
ture extractors, including the Inception V2 model [25], in
the context of feature extraction for object detection, and the
effect of altering the input size on the detection precision
is examined, among other factors. Larger input sizes lead
to larger heatmaps and denser object detection, but impose
heavy memory and computational constraints. In contrast,
smaller input sizes are processed faster but lead to coarser,
less accurate predictions.

2.2. Object Tracking

Most of the 2D visual object tracking algorithms employ the
tracking-by-detection approach [26-28], where a discrimina-
tive model is trained by employing a ROI representation of
the first video frame and then used to detect the target ROI in
the next ones. It is typically updated within successive video
frames. Correlation filter-based tracking algorithms tend to
vary with regard to: a) the optimization procedure followed
in order to train the model, and b) the target template repre-
sentation (e.g., HOG feature descriptors [29], grayscale raw
pixel values, etc.).

Correlation filter-based 2D visual target tracking algo-
rithms are suitable for real-time applications, especially on
embedded systems that tend to have limited computational
resources. A correlation filter tracker regresses the repre-
sentations of all possible object template translations to a
Gaussian distribution. The original ROI object template
is regressed to its peak. Due to the circulant structure of
the template representations, the regression problem can be
solved in the Fourier domain, thus accelerating the learning
and testing processes of the tracker. Correlation filter-based
approaches seem to be more robust to target rotations than
methods based on classification [30].

The success of CNNs in various visual analysis tasks,
has led to their adoption for visual tracking. SiamFC [31] is
one such CNN-based tracker, trained as a fully convolutional
siamese network, which performs cross correlation between
the features extracted from the target and a candidate region
to find the new position of the target. In contrast to GOTURN,
data augmentation is unnecessary, due to the network’s fully



convolutional nature. Its successor, CFNet [32], included a
Discriminative Correlation Filter (DCF) module, presented
as a fully learnable layer.

More recently, anchor-based ROI selection was incor-
porated into a siamese architecture for tracking, coined
SiamRPN [33]. The main benefit of using anchors to match
the bounding box of the target is that the tracker can handle
aspect ratio changes, when traditional trackers typically only
deal with size changes while maintaining a constant aspect
ratio.

3. AN EMBEDDED UAV VIDEO ANALYSIS SYSTEM

Based on the overview in Section 2, a modular software
system for real-time, embedded on-drone video analysis has
been implemented using the popular Robot Operating System
(ROS) middleware [34]. The latter provides the abstractions
of topics (following a publisher/subscriber model) and ser-
vices, to permit easy inter-process communication across
devices. Standard ROS message libraries, as well as a set
of custom messages and services have been employed for
inter-module interactions.

The presented 2D Visual Information Analysis system
consists of a visual object detector and a visual object tracker.
A Master Visual Analysis node (MVA) serves as a service
client for the initialization of the detection and tracking tasks.
It receives an uncompressed video frame from the UAV’s
camera in real-time and generates 2D positions of the tracked
targets as regions-of-interest/bounding boxes in pixel coordi-
nates. The system is initialized by a call to the follow_target
service, which informs 2D Visual Information Analysis about
the current target type and target ID.

The MVA subsequently calls the defect service, which the
detector provides, and receives possible ROIs (e.g., bounding
boxes of persons of interest). These, or a subset of them, are
forwarded to the tracker via the the track service, which ini-
tializes the tracker. After initialization, the tracker produces
ROIs for all tracked objects, given just the video input from
the video streamer node. The tracker may be re-initialized by
calling the follow_target service. The proposed system is il-
lustrated in Figure 1. Note that the proposed system is very
modular and can work with any detector and tracker combi-
nation, given that the detector can produce bounding boxes of
possible candidates from an input image, and that the tracker
can then be initialized with those candidates and start tracking
the objects in subsequent frames.

3.1. Object Detection

For the purpose of object detection, we focus our study on
single-stage detectors, namely SSD and YOLO. Although
region-based detectors, such as Faster R-CNN, are more ac-
curate, they tend to be slower than single-stage detectors

as demonstrated in [24], motivating our choice of evaluated
detectors.

SSD SSD [19] is a single stage multi-object detector, mean-
ing that a single feed forward pass of an image suffices for
the extraction of multiple bounding boxes with coordinate
and class information and no region proposal occurs inter-
nally. In [24], SSD was used as a meta-architecture for single
stage object detection and compared against region-based de-
tectors. Among the findings of that work, was that SSD with
MobileNets and Inception V2 for the feature extraction step
provided the best time performance at the cost of lower detec-
tion precision, as evaluated on the challenging COCO dataset.

YOLO Although similar in nature to SSD, YOLO [20] is
a widely used object detector, whose popularity may be at-
tributed to its simplicity, stemming from its ability to detect
multiple objects with a single forward pass of an image, in
combination with its speed which surpasses that of SSD. A
smaller version, named Tiny YOLO, is also available and per-
forms object detection based on the same principles. Using
half the convolutional layers, Tiny YOLO sacrifices precision
for the sake of speed. The tiny version is also fully convolu-
tional and subsamples the input image by a factor of 32.

3.2. Object Tracking

Multithreaded KCF For the 2D visual target tracking task
of our system we developed a multithreaded version of the
KCF algorithm? in order to achieve faster target tracking
speeds. To this end, for every successive frame, the tracking
process spawns three threads running in parallel, each one
dedicated to a different scale factor of the ROL.

SiamFClite We furthermore develop a more lightweight
version of SiamFC, by introducing a depth factor «, sim-
ilar to the one used by MobileNets [24] to improve their
speed. More specifically, the number of filters in each layer
of the siamese architecture is multiplied by o € (0, 1], thus
producing a lighter network which requires fewer opera-
tions per layer. Let n; denote the number of filters for layer
l =1,...,5 for the five layers of AlexNet, the base feature
extractor of SiamFC. The developed SiamFClite tracker is pa-
rameterized by Z?:1 n filters, as opposed to the Z?Zl ng
of the original SiamFC.

4. EMPIRICAL EVALUATION

4.1. Real-time Object Detection

We evaluate the detectors on another single-class problem,
that of detecting bicycles in a cycling race. For this purpose,

2Qriginal KCF code in C++: https:/github.com/joaofaro/KCFcpp
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Fig. 1. The ROS computational graph of the developed detection and tracking framework.

we have gathered a dataset consisting of about 12k images
from cycling events and annotated about 77k cyclists along
with their bicycles. As most of the shots are aerial, the anno-
tated objects are small relative to the image size. The dataset
also contains many partially occluded objects as well as ob-
jects with motion blur. Finally, the bicycles to be detected are
professional and easy to confuse with other vehicles, such as
motorcycles, especially in distant shots.
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Fig. 2. True positive rate vs false positives for the SSD detec-
tors with MobileNet and Inception base models on the Bicy-
cle Detection benchmark.

Figure 2 illustrates the performance of the SSD with Mo-
bileNet vl and Inception v2 backbones detectors. As ex-
pected, at a fixed 500 false positive detections, the perfor-
mance rises dramatically as the resolution increases — from
32.2 to 65.1 for MobileNet and from 34.5 to 64.5 for Incep-
tion. By allowing for more false positives, the Inception mod-
els achieve higher recall rates. It is also noteworthy that the
number of false positives is much larger than in the face de-
tection scenario, testifying to the difficulty of this task. At
around 22 FPS and 56.2 recall rate (at 500 false positives),
we identify the MobileNet vl model at 192 x 192 input res-
olution to offer a great trade-off between speed and accuracy.
The results are also summarized in Table 1 for both backbones
and all input sizes.

For the Tiny YOLO detector, the recall curves are illus-
trated in Figure 3. It is obvious that Tiny YOLO is very prone

Input Size Extractor | FPS | Recall
00300 | mecpion2 85 612
2o | peeepion2 | 27| 562
192x102 | (RS 00 | 26
t60x160 | meeplionv2 [ 104180
Dxios | eepion 2 | 80 22

Table 1. Frames per second and recall scores for various input
sizes for the SSD with Inception v2 and MobileNet v1 feature
extractors on the Bicycles Benchmark.

to false positives, which depicts the performance of various
Tiny YOLO configurations. At the smallest input resolution
of 224 x 224, the detector runs at 39 FPS but achieves a
disappointing recall rate of 27.3, when the SSD detectors at
the same input size achieve over 30 and fewer false positives
in general. However, at 288 x 288 input size, Tiny YOLO
achieves a recall rate of 35.7 and 23 FPS, much faster than
any of the SSD detectors and almost real time.

4.2. Real-time Object Tracking

We evaluate the performance of four trackers, which have
been incorporated into the proposed 2D Visual Informa-
tion Analysis package: baseline KCF, our multithreaded
KCF and SiamFClite trackers, as well as the recently pro-
posed SiamRPN. Their performance comparison is sum-
marized in Table 2, in terms of speed (FPS) and overlap
with the groundtruth target, as measured on the OTB100
dataset [35]. More specifically, we report the Area Under the
Curve score (AUC), for the overlap success percentage versus
overlap threshold curves, averaged over the 100 sequences
of OTB100. The multithreaded KCF manages to outperform
the standard version by more than 20 fps. SiamFClite also
manages to achieve an impressive AUC score while running
at 30fps, whereas SiamRPN in general is not real-time, but
achieves the best tracking performance by a large margin.
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Fig. 3. True positive rate vs false positives for the Tiny YOLO
detectors on the bicycle benchmark.

Tracker | FPS | AUC
KCF 30 | 477
KCF (multithreaded) | 51 47.7
SiamFClite 30 54.4
SiamRPN 15 63.7

Table 2. Comparison of various trackers. All speed measure-
ments made on a Jetson TX2 platform.

5. CONCLUSIONS

An overview of the state-of-the-art in real-time object detec-
tion/tracking from video footage has been presented, from the
perspective of embedded UAV video analysis. The combina-
tion of one-stage deep neural detectors and correlation-based
trackers seems to provide the best balance between accuracy
and real-time performance, under the energy and computa-
tional constraints imposed by the UAV setting. A specific
modular software system incorporating a range of detectors
and trackers was implemented in a ROS environment and a
evaluated on a number of relevant datasets. The results indi-
cate that a sophisticated, neural network-based detection and
tracking system can be deployed at real-time even on embed-
ded devices.
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