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ABSTRACT

In this paper, we address the problem of lightweight and
effective visual object tracking and we present a real-time
tracking system suitable for integration in embedded au-
tonomous platforms. We propose a novel tracking frame-
work for classification-based re-detection and tracking, with
learnable management of tracking and detection results. The
proposed framework includes a novel, very efficient object re-
identification method, which filters the detection candidates
and systematically corrects the tracking results. In our ex-
periments, we demonstrate the effectiveness of the proposed
system by comparing its performance against several other
state-of-the art trackers and report the results on the UAV123
and UAV20L datasets. The results indicate that the proposed
method is significantly more robust and accurate against re-
cent state-of-the-art trackers, surpassing problems caused by
real-world scenarios, while maintaining fast tracking speeds,
making it suitable for use in real-time vision applications
for autonomous robots, such as Unmanned Aerial Vehicles
(UAVSs).

Index Terms— Visual Object Tracking, Lightweight
Tracking, Re-detection

1. INTRODUCTION

Single object tracking is a crucial task in computer vision
pertaining to a vast range of applications, including surveil-
lance, robotic and drone vision. Although much progress has
been made in the filed of object tracking, developing robust
solutions in terms of heavy occlusions, abrupt motion, de-
formations and illumination variations remains a challenging
problem. In many cases trackers can drift from the original
object and never recover it, in which case re-identification is
required [, P]. Real world scenarios present several chal-
lenges towards the re-identification task, mainly due to inter-
class variations, i.e., different objects may look alike across
different video frames, or intra-class variations, i.e., the same
object may look different as a consequence of changes in il-
lumination, scale or pose, indicated by appropriate attribute
labels in modern tracking benchmarks [3].

In most typical trackers, a re-identification process would
consist of exhaustively evaluating all possible locations in or-

Fig. 1. Example of the proposed joint tracking and tracking
framework. During tracker’s 7 normal function, the reported
bounding box (red) is evaluated by the classifier C, and a de-
cision is made on whether the reported bounding box corre-
sponds to the correct target (cyan). Based on the classifier’s
output, the detector D predicts possible locations of the target
(yellow). The classifier chooses the correct target and track-
ing continues.

der to find the region that best corresponds to the most recent
model of the target. This is extremely inefficient and, as a re-
sult, quite ineffective as several input frames may be lost dur-
ing the exhaustive evaluation leading to more tracker failures.
Thus, what is required is a fast way to filter possible locations
of the target as soon as a tracking failure is recognized, as
well as an efficient way to select the actual target from a list
of potential candidates. Recognizing when a tracking failure
has or is about to occur is also a very crucial component to a
robust tracking system.

In this paper, we propose a novel tracking framework for
classification based target re-detection and tracking (CRT).
The proposed framework incorporates three basic modules:
a tracker 7, a detector D, and a classifier C. The tracker
estimates the position of a given target in subsequent video
frames. The detector outputs possible locations of the tar-
get in case of failure, while the classifier is responsible for
re-detecting the target by evaluating the bounding boxes pro-
duced by the tracker and detector. Thus, the proposed frame-
work automatically decides if and when to re-initialize the
tracking procedure. An example of the proposed framework’s
function is illustrated in Figure [.

This paper is structured as follows. In Section B, we de-
scribe the related work in long-term visual object tracking,
while in Section B, we analyze the proposed framework and
discuss the role of each component in depth while providing
insight into the system’s intricate details. The conducted ex-
periments on object tracking are analyzed in Section B and



finally, conclusions are drawn in Section B.

2. RELATED WORK

Convolutional Neural Networks (CNNs) have met great suc-
cess in many modern computer vision problems, such as
object recognition and detection [@]. Trackers based on con-
volutional neural networks, have recently started to attract
research attention. The first line of research was focused
on combining discriminative correlation filters (DCF) based
methods with CNNs by replacing hand crafted features with
deep features. CNN-based trackers like MDNet [5], ECO [6],
have achieved state-of-the-art performance on various object
tracking benchmarks, inspiring a plethora of works.

Recently, a spatially supervised, recurrent CNN coined
ROLO [M], was proposed, to regress detections produced by
a typical object detector from frame to frame. In [R], a fully
convolutional Siamese network (SiamFC) was used to predict
the location of a given target in subsequent frames. In [U],
the authors proposed a tracker named ADNet, controlled by
sequentially pursuing actions learned by Deep Reinforcement
Learning. In [I0], the GOTURN tracker uses a deep regres-
sion network, trained to learn a generic relationship between
object motion and appearance, drawing from the ability of
deep CNNs to model complex functions from large amounts
of data. The last two methods do not use any fine tuning dur-
ing test time, which fundamentally increases their computa-
tional efficiency.

The aforementioned tracking approaches have multiple
drawbacks, such as their inability to handle variations aris-
ing from long-term tracking scenarios, as well as their com-
putational complexity. Inspired by the considerable speed-up
potential of offline training, we show that it is possible to inte-
grate state-of-the-art object detectors that are trained entirely
offline to the tracking task and achieve real-time performance,
even on embedded systems, while maintaining state-of-the art
tracking accuracy.

3. PROPOSED FRAMEWORK

Our proposed system architecture consists of three parts: a de-
tector D, responsible for predicting possible targets, a tracker
T, and a classifier C, which coordinates the tracking and de-
tection results and manages the final output.

The detector D is a submodule capable of predict-
ing the locations of possible targets given an input frame
Iy ¢ RHXWxC f =1,..., F, with spatial dimensions H,
W and C channels. It output should be five values for each
detected box, representing coordinates, dimensions, as well
as the detector’s confidence for the predicted box. Formally,
the detector is formulated as a function fp of the input image:

fo(Ly) = {a/}}, (1)

where Ny is the number of detected objects for the f-th
frame, and d{ = [x{, y,{, wzf, h{7 c{]T is the i-th predicted
box for the same frame, represented as a vector containing
the box coordinates in top-right format, the box size, and
the detector’s confidence for this box. The detector may, for
example, be implemented as a state-of-the-art two-stage or
single-stage CNN-based object detector, such as any variant
of Faster R-CNN [4], YOLO [[1] or SSD [I2], all of which
are suitable candidates for the specified detection function.
The tracker 7 may be any traditional visual object tracker,
which given an input frame Iy and the previous target loca-

tion and size t/~1 = [z{ ", y{ 7", w!{ " n{T")T, predicts
the target’s position in the current frame t/:
frp ¢/ =7, e)

where t° is the groundtruth bounding box of the target to
be tracked. In addition, the tracker should provide access to
its internal scoring function g7, which evaluates a candidate
bounding box and produces a tracking score q € R, roughly
corresponding to the similarity between the candidate box and
the target. Recent state-of-the-art trackers based on correla-
tion filtering, such as SiamFC [[3] or KCF [[4], fit ideally
into the specified system. Formally, given an input frame I
as well as candidate box d{ predicted by the detector, the
tracker outputs a tracking score q[ :

g7(Iy,df) = ¢f. 3)

Each of the candidate bounding boxes df for the f-th frame
is then evaluated and augmented with the tracker’s score:
df = [af yf wl 1] el .o])". “
Finally, the classifier C must take into consideration fea-
tures xlf € R4 extracted from the scored bounding boxes a{
and the previous target position t/~!, and predict which, if
any, of the potential bounding boxes correspond to the origi-
nal target, so as to re-detect it in case of failure. Formally, the
classifier should be formulated as a function f¢ (xf ) which
evaluates the features extracted for a bounding box and out-
puts a score p{ € R corresponding to the object’s probability
of being the actual tracked object:

fe(x)y =p!, (5)

where x represents the features extracted from a scored can-
didate box d. The tracker’s prediction t/ is also considered as
a candidate box for the classifier to verify as corresponding to
the actual target, enhanced by the tracker’s score g7 (I, t/ )
for this box, forming the evaluation set D/ e R(ns+1)x6,
“f If 15T

D/ =[df d],....d], [t/] ©)
where t/ = [:17{, ytf, w{, h{, 1, qtf] is the score-augmented 6-
dimensional vector representing the tracker’s prediction on



the position of the target, where a value of 1 is inserted to
the fifth position, differentiating this box from the ones ex-
tracted by the detector, and qtf is the tracker’s score on the
predicted target itself. The box with the highest probability is
the system’s final output.

The classifier inherently acts as the system coordinator,
by first detecting a failure when all of the candidate boxes are
unlikely to depict the tracked target. This functionality can
be controlled by a threshold pyj, for the output of the classi-
fier, such that any box with a predicted probability under this
value is considered as a negative sample. As an alternative,
a threshold ¢;;, may be chosen for the tracker’s score on the
predicted location t/, by which to decide when a failure has
occurred, i.e., when the score is below that threshold.

The tracking procedure begins with the tracker estimat-
ing the new location of the target given the input image and
its previous location. Possible tracking failures are detected
by the classifier, i.e., by evaluating the box predicted by the
tracker. If the classifier outputs a high probability, then no
extra effort must be exerted, as the prediction is considered
correct. Otherwise, the detector must detect possible targets
which are then evaluated by the classifier. If a high proba-
bility is predicted for any of those targets, the target with the
highest probability of them all is chosen as the system’s out-
put and the tracker is re-initialized at this position.

4. EVALUATION

We evaluate the proposed tracking framework on the UAV123
and UAV20L [B] tracking benchmarks and compare its perfor-
mance against several state-of-the art methods. Following the
evaluation method in [I5], we measure the performance of the
compared trackers in one-pass evaluation (OPE). For this pur-
pose, we used the two standard metrics: (i) overlap success
rate, defined as the percentage of frames where the bounding
box overlap surpasses a given threshold, and (ii) center loca-
tion error, defined as the percentage of frames where the Eu-
clidean distance between the centers of the ground-truth and
estimated bounding boxes is under than a given threshold. We
use the toolkit provided by [B].

For the tracker 7, we choose the KCF tracker [I4], for
its speed and CPU implementation, leaving the GPU to be
exclusively used by the detector. For the detector D, we em-
ploy the state-of-the-art YOLOVv3 detector [IT] trained on the
COCO dataset, capable of detecting 80 object classes. The
detector is limited to run only in frames where the tracking
score produced by g7 for the tracked bounding box is below
a threshold ¢, set to 0.5.

For the classifier C, we use a simple Multilayer Percep-
tron (MLP) with one hidden layer of 100 neurons, followed
by a ReLU non-linearity and a final binary classification layer.
To train the classifier we use the VisDrone2018-SOT train set
[TH]. We consider a sample x{ to be positive if it has an over-
lap of at least 0.5 with the annotated, groundtruth box. All

other samples are considered as negatives, and we maintain a
1:5 ratio for positive to negative samples, by only keeping the
five samples which are the closest to the groundtruth box.

We evaluate the proposed method with all the tracking re-
sults reported in [B], including SRDCF [I7], MEEM [I§],
SAMF [149], MUSTER [Z0], DCF [14], DSST [21], OAB
[22], TLD [@], STRUCK [23], MOSEE [24], CSK [J5] as
well as the baseline tracker KCF [I4] and ECO [B]. Fur-
thermore, we evaluate several trackers on this dataset and
compare their results to the proposed framework: MDNet
[8], SiamFC [I3], ADNet [9], CREST [26], BACF[2]] and
GOTURNI[I].

The overall comparison of all trackers on UAV123 using
success and precision plots is illustrated in Figure Ma. For
each plot, the 10 best performing trackers as well as the base-
line KCF are shown with corresponding representative mea-
sure i.e., AUC in success plots and precision at 20 pixel in
precision plot. In terms of precision, the proposed method
(CR+KCF) achieves a score of 71.4%, coming in third place
after MDNet (1fps) and SiamFC while being much faster than
both ™. In terms of success, CR+KCF surpasses all real-time
trackers, while providing a huge boost (+20%) to the baseline
performance of KCF and maintaining its speed.

For the UAV20L dataset, we also compare our tracker
with the recently released PTAV tracker [], which is a par-
allel tracking and verifying system. We compare the results
for the class-agnostic case in Figure Pb. Both in precision and
in success plots, CR+KCF clearly outperforms all the other
trackers, with an overlap measure of 52.4% in the success
rate plot and a score of 72% at the precision plot.

4.1. Speed and Deployment on Embedded Devices

We have implemented our proposed tracking framework in
Robot Operation System (ROS) to a) allow for the efficient
communication of the framework’s submodules and control
by a central visual analysis node, and b) to facilitate the sys-
tem’s deployment on robotic devices. More specifically, we
have deployed the proposed system on an NVIDIA Jetson
TX2 module. To maintain real-time speed even on this low-
computational power device, we use the KCF tracker and a
YOLOV2 detector, alongside a buffering mechanism to alle-
viate the effect of the detector’s running time on the overall
system performance.

Overall, the implemented system is capable of running at
about the same speed as the traditional KCF tracker, while
achieving much higher overlap scores. At standard resolution
images (640 x 480) our system can run at an average of 24{ps
on a TX2 module, using the multiscale version of KCF. By
using the non-adaptive version, higher speeds can be achieved
while the detector can handle the scale variations.

!'See comparison in https://github.com/foolwood/benchmark _results
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Fig. 2. Success (right) and precision plots (left) for OPE (one pass evaluation) on the a) UAV123 and b) UAV20L benchmarks.

Real-time trackers are shown in bold.

5. CONCLUSIONS

We have presented a general tracking framework, named
CRT, which achieves high tracking performance, comparable
to state-of-the-art trackers while maintaining real-time pro-
cessing capabilities even on embedded systems. Our results
in widely accepted tracking benchmarks show that CRT is
suitable for long-term tracking scenarios and has the ability
to efficiently and effectively handle severe occlusions, view-
point changes and scale variations. A novel re-initialization
module that can be integrated in different tracking algo-
rithms and deals with target loss is introduced. Extensive
experiments results demonstrate the ability of the proposed
framework to significantly enhance the performance of the
basic KCF tracker, achieving state-of-the-art results, while
operating in real-time even on embedded devices.

Acknowledgments

This project has received funding from the European Unions
Horizon 2020 research and innovation programme under
grant agreement No 731667 (MULTIDRONE). This publica-
tion reflects the authors views only. The European Commis-
sion is not responsible for any use that may be made of the
information it contains.

6. REFERENCES

[1] K. Mikolajezyk Z. Kalal and J. Matas, “Tracking-
learning-detection,”  IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2012.

[2] Heng Fan and Haibin Ling, “Parallel tracking and veri-
fying: A framework for real-time and high accuracy vi-
sual tracking,” in Proc. IEEE Int. Conf. Computer Vi-

sion, Venice, Italy, 2017.

[3] J. Lim Y. Wu and M.-H. Yang, “A benchmark and sim-
ulator for uav tracking,” in IEEE European Conference

on Computer Vision (ECCV 2016 ), 2016.

[4] Ross Girshick Jian Sun Shaoqing Ren, Kaiming He,
“Faster r-cnn: Towards real-time object detection with
region proposal networks,” in Advances in Neural In-

formation Processing Systems (NIPS), 2015.
(5]

Han B. Nam, H., “Learning multi-domain convolutional
neural networks for visual tracking,” in The IEEE Con-
ference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[6] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan,
and Michael Felsberg, “Eco: Efficient convolution op-

erators for tracking,” in CVPR, 2017.



(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

Guanghan Ning, Zhi Zhang, Chen Huang, Zhihai He,
Xi-aobo Ren, and Haohong Wang, “Spatially super-
vised recurrent convolutional neural networks for visual
object tracking,” in IEEE International Symposium on
Cir- cuits and Systems (ISCAS), 2016.

Luca Bertinetto, Jack Valmadre, Stuart Golodetz, On-
drej Miksik, and Philip H. S. Torr, “Staple: Comple-
mentary learners for real-time tracking,” in The IEEE

Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2016.

Sangdoo Yun, Jongwon Choi, Youngjoon Yoo, Kimin
Yun, and Jin Young Choi, “Action-decision networks
for visual tracking with deep reinforcement learning,” in
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Silvio Savarese David Held, Sebastian Thrun, “Learning
to track at 100 fps with deep regression networks,” in
Conference Computer Vision (ECCV), 2016.

R Girshick A Farhadi J Redmon, S Divvala, “You
only look once: Unified, real-time object detection,” in
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg, “Ssd: Single shot multibox detector,” in European
conference on computer vision. Springer, 2016, pp. 21—
37.

J. F. Henriques A. Vedaldi L. Bertinetto, J. Valmadre and
P. H. Torr, “Fully- convolutional siamese networks for
object tracking,” in European Conference on Computer
Vision (ECCV), 2016.

Joao F Henriques, Rui Caseiro, Pedro Martins, and
Jorge Batista, “High-speed tracking with kernelized cor-
relation filters,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 37, no. 3, pp. 583-596,
2015.

J. Lim Y. Wu and M.-H. Yang, “Online object tracking:
A benchmark,” in IEEE Computer Vision and Pattern
Recognition (CVPR), 2013.

Pengfei Zhu, Longyin Wen, Xiao Bian, Haibin Ling,
and Qinghua Hu, “Vision meets drones: A challenge,”
arXiv preprint arXiv:1804.07437, 2018.

Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan,
and Michael Felsberg, “Learning spatially regularized
correlation filters for visual tracking,” in Proceedings of
the IEEE International Conference on Computer Vision,

2015, pp. 4310-4318.

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

Jianming Zhang, Shugao Ma, and Stan Sclaroff,
“MEEM: robust tracking via multiple experts using en-
tropy minimization,” in Proc. of the European Confer-
ence on Computer Vision (ECCV), 2014.

Jianke Zhu Yang Li, “A scale adaptive kernel correlation
filter tracker with feature integration,” in European Con-
ference on Computer Vision, Workshop VOT2014 (EC-
CVW), 2014.

Chaohui Wang Xue Mei Danil Prokhorov Dacheng Tao
Zhibin Hong, Zhe Chen, “Multi-store tracker (muster):
A cognitive psychology inspired approach to object
tracking,” in Computer Vision and Pattern Recognition

(CVPR), 2015.

P. Martins J. Henriques, R. Caseiro and J. Batista, “Ex-
ploiting the circulant structure of tracking-by-detection
with kernels,” in European Conference on Computer
Vision (ECCV), 2012.

Grabner M. Bischof H. Grabner, H., “Real-time track-
ing via on-line boosting,” in Proceedings of the British
Machine Vision Conference (BMVC), 2006.

Philip H. S. Torr Sam Hare, Amir Saffari, “Struck:
Structured output tracking with kernels,” in Interna-
tional Conference on Computer Vision (ICCV), 2011.

Beveridge J.R. Draper B.A. Lui Y.M. Bolme, D.S., “Vi-
sual object tracking using adaptive correlation filters,” in
The IEEE Conference on Computer Vision and Pattern
Recognition CVPR) Year = 2010.

Jodo F Henriques, Rui Caseiro, Pedro Martins, and
Jorge Batista, “Exploiting the circulant structure of
tracking-by-detection with kernels,” in European con-
ference on computer vision. Springer, 2012, pp. 702—
715.

Yibing Song, Chao Ma, Lijun Gong, Jiawei Zhang, Ryn-
son Lau, and Ming-Hsuan Yang, “Crest: Convolutional
residual learning for visual tracking,” in IEEE Interna-
tional Conference on Computer Vision, 2017, pp. 2555
—2564.

Simon Lucey Hamed Kiani Galoogahi, Ashton Fagg,
“Learning background-aware correlation filters for vi-
sual tracking,” .



	 Introduction
	 Related Work
	 Proposed Framework
	 Evaluation
	 Speed and Deployment on Embedded Devices

	 Conclusions
	 References

