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Abstract—This paper addresses the problem of controlling the
orientation of a 3-axis gimbal that is carrying a cinematography
camera, using image measurements for feedback. The control
objective is to keep a moving target of interest at the center of the
image plane. A Region-of-Interest (ROI) that encloses the target’s
image is generated through the combination of a visual object
detector and a visual object tracker based on Convolutional
Neural Networks. These are specially tailored to allow for high
frame rate performance with restricted computational power.
Given the target’s ROIL, an attitude error in the form of a rotation
matrix is computed and a attitude controller is designed, which
guarantees convergence of the target’s image to the center of
the image plane. Experimental results with a human face as the
target of interest are presented to illustrate the performance of
the proposed scheme.

Index Terms—vision-based control, visual object detection,
visual object tracking, attitude control

I. INTRODUCTION

Gimbals are typically used in aerial vehicles to attenuate
vibrations and stabilize the camera in the presence of angular
motion of the vehicle and other disturbances, through inertial
stabilization [1]-[3]. In addition, gimbals effectively augment
the Field of View (FOV) of the camera through angular
motion, which can either compensate for or be combined with
translational motion to achieve the desired shooting objective.
This ability to mitigate the FOV constraint becomes even more
critical when tracking of moving targets is involved [4]. In fact,
physical, autonomous target tracking using a camera/gimbal
combination is an extremely important functionality for vision-
enabled robotic systems, e.g., in autonomous cinematogra-
phy/intelligent shooting applications [5]-[8].

Achieving the goal of pointing the camera towards a target
can be divided into two tasks. The first concerns visual
object detection and tracking. This module provides the image
measurements that are used as input to the second module,
which is responsible for controlling the gimbal so that the
camera optical axis points in the desired direction.

In this paper, we propose to address the gimbal control
problem as a problem of attitude tracking on the Special
Orthogonal Group SQ(3), using rotation matrices to represent
the gimbal attitude [9], [10]. One of the contributions of the
paper is the definition of a reference rotation matrix to be
tracked, and ensuing gimbal controller, that can be directly
expressed as functions of the image measurements, with no
need depth estimation. The reference rotation matrix is defined
as a function of the relative position between the target and
the camera and keeps the camera horizontally aligned. The
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standard structure for an attitude controller on SO(3) is then
adopted, based on the resulting error rotation matrix. We then
show that this error matrix can be expressed directly as a
function of the image measurements. To achieve horizon-
tal alignment, body-fixed measurements of the gravitational
acceleration, typically provided by accelerometers, are also
required.

The paper is structured as follows. Section II summarizes
the related work in terms of visual object detection and
tracking, as well as gimbal control strategies. Sections III and
IV formulate the problem and present a nonlinear control law
for the gimbal control. Section V summarizes the strategy used
for obtaining the visual estimates of the object location in the
image frame, while Section VI present experimental results
for the overall algorithm. Finally, Section VII presents some
concluding remarks.

II. RELATED WORK
A. Gimbal control

Gimbal control has been extensively studied in the past, as
an integral part of the so-called Inertial Stabilized Platforms
(ISPs) used to stabilize the line of sight of a sensor mounted
on a platform, which is possibly moving and rotating, relative
to a target or an inertial reference frame. The range of sensors
and applications is wide and includes cameras, telescopes,
antennas, and weapon systems, to name a few [11]. A excellent
introduction to the topic can be found in the special issue
from the IEEE Control Systems Magazine dedicated to ISP
technology [3], [11]. The typical gimbal control system, which
is also the one adopted in this paper, has a inner-outer loop
structure, with a high bandwidth inner loop system that tracks
angular rate commands and rejects disturbances based on rate
gyros measurements and a lower-bandwidth outer loop system
that is responsible for the actual pointing and tracking [1], [3],
[11]. Thus, the pointing and tracking performance is limited
by the dynamics the inner-loop system, which is primarily
determined by the bandwidth of the gyroscopes and actuation
system and disturbance effects, i.e. the motion of the platform
itself.

This paper is primarily concerned with the outer-loop con-
trol system, which receives image measurements and computes
angular rate commands to correct the image displacements.
Unlike the work [1], which defines an error directly in the
image plane, we construct an error rotation matrix and define
an attitude tracking controller directly on SO(3). Recent work
has been dedicated to this problem to provide almost global
asymptotic tracking solutions [9], [10]. More recently global
solutions based on hybrid control techniques [12] or with



guarantees of finite-time convergence [13] have also been
proposed, all of which can be applied to the problem gimbal
control under the form proposed in this paper.

B. Visual object detection and tracking

In general, deep Convolutional Neural Networks (CNNs)
have been excelling continuously on various challenging visual
analysis tasks and competitions. Deep, feed-forward neural
models have been successfully trained and deployed on such
tasks, partly due to the public availability of large anno-
tated datasets and partly due to the continuous development
of increasingly more powerful GP-GPUs. One approach to
achieving real-time performance with restricted computational
hardware is to use one-stage deep neural detectors, structured
around the concept of “anchors". These detectors, such as
Single-Shot Detector (SSD) [14] and You Only Look Once
(YOLO) [15] simultaneously regress the pixel coordinates of
visible object ROIs (in the form of spatial offsets from the pre-
defined anchors) and assign them class labels. The first part
of these models is typically a base feature extracting network,
such as AlexNet, VGG-16, MobileNet vl or Inception v2,
that has been pre-trained on a ImageNet or COCO dataset for
whole-image classification tasks.

SSD [14] is a single stage multi-object detector, meaning
that a single feed forward pass of an image suffices for the
extraction of multiple bounding boxes with coordinate and
class information and no region proposal occurs internally.
In [16], SSD was used as a meta-architecture for single
stage object detection and compared against region-based
detectors. Among the findings of that work, was that SSD
with MobileNets and Inception V2 for the feature extraction
step provided the best time performance at the cost of lower
detection precision, as evaluated on the challenging COCO
dataset.

Correlation filter-based 2D visual target tracking algorithms
are suitable for real-time applications [17], especially on
embedded systems that tend to have limited computational
resources. A correlation filter tracker regresses the representa-
tions of all possible object template translations to a Gaussian
distribution. The original ROI object template is regressed
to its peak. Due to the circulant structure of the template
representations, the regression problem can be solved in the
Fourier domain, thus accelerating the learning and testing
processes of the tracker.

The success of CNNs in various visual analysis tasks, has
led to their adoption for visual tracking. SiamFC [18] is
one such CNN-based tracker, trained as a fully convolutional
siamese network, which performs cross correlation between
the features extracted from the target and a candidate region
to find the new position of the target.

III. PROBLEM FORMULATION

Let {W} denote the world reference frame with origin fixed
in the environment and East-North-Up (ENU) orientation.
Consider also two additional reference frames, the camera
reference frame {C'} with z-axis aligned with the optical axis
but with opposite sign and the target reference frame {7'}
attached to the moving target of interest (see Fig. 1).
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Fig. 1. Problem setup and notation.

The configuration of {C'} with respect to {W} is denoted
by (Wpc, Rc) € SE(3), where Wpe € R? is the position
of the origin of {C} expressed in {W} and Rc € SO(3)
is the rotation matrix from {C} to {W}, SO(3) denotes the
Special Orthogonal Group of order (3) and SE(3) the Special
Euclidean Group of order three. Similarly, the configuration of
{T} with respect to {W} is denoted by (Wpr, Rr) € SE(3).

A simplified kinematic model for the gimbal angular motion
is adopted, which can be described by

Rc = ReS(w) (1)

where w denotes the angular velocity and the operator S :

R? + so0(3) maps vector in R? to skew-symmetric matrices,
!/

such that for a = [al a9 ag]

0 as —a
S@)=|—-as O ay (2)
as —aq 0

and thus S(a)b = a x b, where x denotes the cross-product.

Remark. Under the assumption that the gimbal is equipped
with an Inertial Measurement Unit (IMU) and a low-level
controller, it is reasonable to adopt the simplified kinematic
model described in (1). In this case, the low-level controller
receives the measurements from the IMU together with angular
velocity references to be tracked and computes the actual
inputs for the gimbal joint motors. Fig. 2 shows an example
of such a gimbal.

Fig. 2. 3-D Gimbal and Camera equipped with IMU and low-level controller.



It is also assumed that a gimbal and target can move freely,
meaning that " pc(t) and Wpr(t) are time-varying, and that
the gimbal orientation can be controlled independently from
this translational motion.

To complete the problem formulation, it is convenient to
introduce the relative position between the target and the
camera, with coordinates in {I¥} given by

Ya=1l¢z ay 4] ="pc—"pr. 3)

and coordinates in {C'} given by
a="“q=R:"q, )

where R’C denotes the transpose of R, which is also its
inverse, RpRc = Rc Ry, = Is. For convenience, we drop
the superscript © for vectors expressed in {C} and keep the
superscript V' for those expressed in {W}.

Adopting a pin-hole camera model, the 2-D image pixel
coordinates y € R? of the point with 3-D coordinates q =

L qz]T € R3 expressed in {C'} are given by
1
m =A—q, 5)
qz

where A € R3*3 is the matrix of camera intrinsic parameters.
In this framework, the control objective can be defined as
follows.

Problem 1. Consider the gimbal system described by (1) and
camera model described in (5). Using the image measurements
Yi, define a control law for the angular velocity input w such
that Rc(t) asymptotically converges to a desired orientation
R¢.(t), which guarantees that the target of interest is centered

in the image plane, i.e.
Yl _ 410
[]-af

IV. GIMBAL CONTROL

(6)

As defined in Problem 1, the control objective amounts to
providing a control law for the angular velocity input w such
that the rotation matrix Rc(t) asymptotically converges to
R¢.(t). Given the model defined in (1), this matches exactly
the problem of attitude tracking on SO(3), which has been
treated extensively in the literature (see, for example, [9], [10]
and references therein).

For completeness and assuming that R, is given, we present
a tracking controller law for a kinematic model evolving on
SO(3) and show that it is asymptotically stabilizing. Then, we
show how to construct 7, and the corresponding error matrix,
which guarantee that the image of the target is centered in the
image plane.

A. Attitude Tracking on SO(3)

Working directly on SO(3), the orientation error can be
defined as

R. = R R{ € SO(3) @)
Taking the time derivative of R., we obtain the error system

R. = —S(w)Re + R.S(w") (8)

To define a control law for w, consider the Lyapunov function
given by
V(Re) = tr(Is — R.) )

where tr denotes the trace and I3 the three by three identity
matrix. Straightforward computations show that V' is a pos-
itive definite function of R., meaning that V(R.) > 0 and
V(R.) = 0 if and only if R, = I3. After some algebraic
manipulations, the time-derivative can be written as

V= (w-w")S (R — RY) (10)
Thus, the control law
w=—kS R, - R)) +w* (11)

guarantees that Vis a negative semi-definite function of R,
and R, = I3 is an asymptotically stable equilibrium point
of (8). Further analyses shows that in fact R, = I3 is
almost globally asymptotically stable, meaning that the system
converges to the desired equilibrium except for a zero measure
set of initial conditions. For details, the reader is referred
to [9], [10]. In what follows, it is assumed that the desired
rotation matrix 27, is static or slowly time-varying, such that
w* ~ 0 and w becomes

w=—-kS YR, - R.). (12)

B. Application to Vision-based Gimbal Control

To define the desired camera orientation R{,, we start by
noting that when the camera is aligned with the target q* =
Ry q = |Wqlles, where e3 = [0 0 1), or equivalently,
the z-axis of the camera and " q have the same direction (see
Fig. 1). This observation together with the fact that the camera
should be horizontally aligned suggest the follow expression
for Rf,

R — [ S(Ma)’es  S(Ma)es  "a (13)
TS5 aes] TS(Tajes] [l
i * dy *
\Gc+ad
* —da *
= \aE+a
\/m 0 q=
| Virraa Noarar

where it is assumed that the camera is always above the target,
i.e. g, > 0, but not directly above the target, i.e. [¢, g,] # 0.

Proposition 1. Let y* € R? denote the image coordinates of
the origin of {T'} when Rc = Rf. If R§, is given by (13) then
[y*' 1) = A[0’ 1]’ and the camera is horizontally aligned.

Proof. According to (5) and (4), we can write

y 1
—A .
M ehq

If Rc = R{, it immediately follows from (13) that q* =
R:'Wq = ||q|les and thus

v ) _,4a _ ,|0
) =g =4 [d

(14)

5)



To show that the camera is horizontally aligned, it suffices to
note that the y-axis of the desired camera frame is orthog-
onal to the z-axis of the world reference frame {W}, i.e.,
e5REes =0, where e; = [0 1 0]/. O

Next, we show that the orientation error in the form of R,
can be reconstructed directly from the image measurements y
and the gravitational vector expressed in {C'}. Consequently,
for static or slowly time-varying relative positions between
the camera and gimbal, the control law w can be expressed
as a function of the image measurements and accelerometer
measurements denoted by a.

Lemma 1. Assume that the matrix of intrinsic parameters A
is known and let y € R? denote the image coordinates of
the origin of {T'}. Then, the error rotation matrix R, can be
written as

S(@)’a  S(g)a Q}
R, = |- 4 16
{ Sal Ts@al Tar) '
where q/||q|| is given by
a/lall =~ Y] /14 3] 1 a7)

Proof. Assume that the accelerometers from the gimbal’s IMU
approximately measure the gravity vector expressed in {C'},
ie. a = gRie3, where g is the gravitational acceleration.
Then, using (7) and (13) we can write (16), noting that all
columns of R, must have norm 1 and thus knowing q and a
up to scale factor is enough to compute R.. Assuming that A
is known, then

quh} (18)
qz

and (17) can be readily obtained from (18) by dividing by the
norm. O

V. VISUAL ANALYSIS

In this section, we describe the method adopted to detect
the target on the image plane and obtain estimates of y.
The presented system combines a visual object detector and
a visual object tracker, while it demands cinematographic
shot requirements to have been pre-specified (e.g., desired
target position on video frame). It receives an uncompressed
video frame from the camera in real-time and generates 2D
positions of the tracked targets as ROIs (in pixel coordinates).
The tracker is initialized and periodically validated by the
detector. The produced target 2D position is then employed
to calculate the current visual control error, according to the
desired shot specifications. This error, which constitutes the
final visual analysis system output, is simply the deviation of
the current ROI on-frame position from the desired one (in
pixel coordinates).

SSD, with MobileNet vl as a base feature extractor and an
input image resolution of 192 x 192 pixels, was selected as a
detector. It was found in [19] to offer a great trade-off between
speed and accuracy, since it achieves a processing rate of 22
frames per second (FPS) on embedded Al hardware (nVIDIA
Jetson Tegra X2).

Additionally, a more lightweight version of SiamFC was
developed, by introducing a depth factor «, similar to the
one used by MobileNets [16] to improve their speed. More
specifically, the number of filters in each layer of the siamese
architecture is multiplied by « € (0,1], thus producing a
lighter network which requires fewer operations per layer.
Let n; denote the number of filters for layer [ = 1,...,5
for the five layers of AlexNet, the base feature extractor of
SiamFC. The developed SiamFClite tracker is parameterized
by « Z?:l ny filters, as opposed to the 215:1 ny of the original
SiamFC.

VI. SIMULATION AND EXPERIMENTAL RESULTS

In order to test both the visual detection and the control al-
gorithm, experiments were conducted with a camera mounted
on a 3-axis gimbal, considering a human face as the target of
interest. The camera can stream video on a 620x480 scale at
a frame rate of 30 fps and its calibration matrix is given by

609.219929 0 320
A= 0 821.601329 240
0 0 1

The gimbal, shown in Fig. 2, is equipped with an IMU and a
low-level controller from BaseCam Electronics, which is ready
to receive commands in the form of Euler angle rates A. These
can be readily computed from the angular rate commands
w defined in (12) by applying the standard transformation
between the two.

In the experiments the face detector and tracker produced
a visual control error in form of the image coordinates y
also at 30 fps, which were used to feed the gimbal controller.
An example experiment is illustrated in Figures 3-5 and the
corresponding video is available at !. As shown in Fig. 3,
whenever the subject moves, the gimbal rotates to compensate
for that motion and guarantee convergence to the center of the
image.
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Fig. 3. Position of the face in the image

Figure 4 shows the time evolution of the X and Y pixel
coordinates of the visual control error, together with the values
of the Lyapunov function V. As expected, the image deviates
from the center and V increases whenever there is motion of

Uhttp:/fusers.isr.ist.utl.pt/~rmac/videos/gimbal_test.mp4



the target, because the feedforward term w™* is not present in
the control law. As soon as the target stops moving, the image
and the value of V' quickly converge (in approximately 1s)
back to the origin.
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Fig. 4. X and Y visual error and respective Lyapunov function value

To further describe the experiments, Fig. 5 shows the time
evolution of the gimbal orientation represented in the form of
roll, pitch, and yaw Euler angles. As expected, when the target
motion is either horizontal or vertical, the angular motions are
approximately decoupled and the roll angle remains constant
and close to zero. When the motion is in an oblique direction,
which occurs at ¢ = 18s, all angles change to guarantee
convergence of the target image to the origin, although the
change in the roll angle continues to be negligible.
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Fig. 5. Gimbal orientation in Roll, Pitch and Yaw

VII. CONCLUSIONS

In this paper, we addressed the problem of controlling the
orientation a gimbal-mounted camera to point at a target of
interest. The proposed solution combines a fast and reliable
deep learning visual object detector and tracker, suited for low
computational power implementation, with an attitude con-
troller that is based on image accelerometer measurements and
guarantees convergence of the target image to origin of the im-
age plane. Experimental results have shown the effectiveness
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of the proposed solution, involving human face detection and
tracking. Future work will focus on more dynamic scenarios,
involving different targets and more aggressive camera and
target motions.
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