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Abstract. Automated video summarization is well-suited to the task of analysing
human activity videos (e.g., from surveillance feeds), mainly as a pre-processing
step, due to the large volume of such data and the small percentage of actually
important video frames. Although key-frame extraction remains the most popu-
lar way to summarize such footage, its successful application for activity videos
is obstructed by the lack of editing cuts and the heavy inter-frame visual redun-
dancy. Salient dictionary learning, recently proposed for activity video key-frame
extraction, models the problem as the identification of a small number of video
frames that, simultaneously, can best reconstruct the entire video stream and are
salient compared to the rest. In previous work, the reconstruction term was mod-
elled as a Column Subset Selection Problem (CSSP) and a numerical, SVD-based
algorithm was adapted for solving it, while video frame saliency, in the fastest al-
gorithm proposed up to now, was also estimated using SVD. In this paper, the
numerical CSSP method is replaced by a greedy, iterative one, properly adapted
for salient dictionary learning, while the SVD-based saliency term is retained.
As proven by the extensive empirical evaluation, the resulting approach signif-
icantly outperforms all competing key-frame extraction methods with regard to
speed, without sacrificing summarization accuracy. Additionally, computational
complexity analysis of all salient dictionary learning and related methods is pre-
sented.

Keywords: Key-frame Extraction · Dictionary Learning · Column Subset Selec-
tion Problem · Video Summarization.

1 Introduction

Videos depicting human activities may come from different sources, such as surveil-
lance feeds or movie/TV shooting sessions. They typically extend to many hours of
footage which must be manually browsed in order to retain the most interesting parts.
Video summarization algorithms may help in automating a large part of this tedious and
labour-intensive process, by producing a short summary of the video input. However,
activity videos, which can be considered as temporal concatenations of consecutive
activity segments, share certain properties which make automated summarization dif-
ficult compared to other video types (such as movies [17]): lack of clear editing cuts,
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static camera and static background resulting in heavy visual redundancy between video
frames, as well as increased subjectivity in identifying important video frames (there is
no clear way to proclaim a specific part of a human action as more representative than
another one). Potential sources of such videos are surveillance cameras, capture ses-
sions in TV/movie production, etc.

Video summarization algorithms are expected to achieve a balance between differ-
ent needs, such as sufficient summary compactness (lack of redundancy), conciseness,
outlier inclusion, semantic representativeness and content coverage. Despite the fact
that many different ways to summarize a video exist (e.g., skimming [17], shot selec-
tion [16], synopsis [27], or temporal video segmentation [26, 28]), key-frame extraction,
i.e., producing a temporally ordered subset of the original video frame set that in some
sense contains the most important and representative visual content, remains the most
widely applicable video summarization method. In fact, it is unavoidable if the selected
subset of original video frames must be retained in unprocessed form, since in such
a case video synopsis (which results in synthetic video frames, each one aggregating
content from multiple original video frames) cannot be applied. Moreover, simple tem-
poral video segmentation does not result in a summary per se, but is only a substitute
of shot cut/boundary detection [4], while skimming requires key-frame extraction as
an initial step. Thus, in the context of this paper, the terms “video summarization” and
“key-frame extraction”, as well as the terms “video summary” and “key-frame set”, are
hereafter used as synonymous (although this is not true in general). In actual method
deployment, the extracted key-frames could be temporally extended to key-segments
and then concatenated, so as to form a video skim.

Although supervised key-frame extraction methods, attempting to implicitly learn
how to produce static summaries from human-created manual video summaries, have
recently appeared due to the success of deep learning [32], they suffer from the sub-
jectiveness inherent in the problem (different persons may produce widely differing
summaries for the same video source) and the lack of manual activity video summaries
readily available for training in most use-cases. Indeed, no specific video frame of an
activity video segment can be reliably considered as more important than another one
from the same segment. A more natural summarization goal would be for the algorithm
to select one key-frame per actual activity segment, with the video frames belonging
to the same segment considered as fully interchangeable. Therefore, this paper focuses
on unsupervised key-frame extraction for activity video summarization and employs an
objective evaluation metric that takes the above into account.

Two main algorithm families have emerged for unsupervised key-frame extraction
over the years. The first one consists in distance-based data partitioning via video frame
clustering, under the assumption that video shooting focuses more on important video
frames [33]. The number of clusters is either pre-defined by the user or may depend
proportionally on the video length [9]. The cluster medoids are selected as key-frames,
in a manner dependent on the underlying clustering algorithm. The second algorithm
family consists in dictionary-of-representatives approaches, where the original video
frames are assumed to be approximately composed of linear combinations of a rep-
resentative subset of them. These “dictionary frames” are detected and employed as
key-frames [10].
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In all cases, video frames are either represented by a raw, vectorized form of their
unaltered pixel values (e.g., in [8]), or they are initially described by low-level/mid-
level global or local image descriptors [13, 14], with sparse local descriptors typically
aggregated under a representation scheme such as Bag-of-Features (BoF) [7]. High-
level semantic video frame representations, learnt via deep neural networks, have also
been tested [23].

Video frame clustering implicitly models summarization as a frame sampling prob-
lem, where criteria such as compactness, outlier inclusion and video content coverage
should be met. Scene semantics are not considered and semantics extraction is entirely
offloaded to the underlying, employed video frame description/representation scheme.
Although clustering is a baseline key-frame extraction method, it still dominates the rel-
evant literature due to its simplicity, straightforward problem modelling and relatively
good accuracy.

In contrast, dictionary-of-representatives methods inherently consider scene seman-
tics in an unsupervised manner, since they decompose the video into isolated visual
building blocks. In [6, 22] the video summarization problem is formulated as sparse
dictionary learning, with extracted key-frames ideally enabling optimal linear recon-
struction of the original video from the selected dictionary. In both cases, the outliers
are entirely disregarded.

In [10] a similar approach is followed, via sparse modeling representative selection.
In [8] RPCA-KFE is presented, a key-frame extraction algorithm that takes into account
both the contribution to video reconstruction and the distinctness of each video frame.
The idea is to select as a summary the subset of video frames that simultaneously mini-
mizes the aggregate reconstruction error and maximizes the total distinctness. However,
the distinctness term is defined very inflexibly and is bound to the reconstruction term
in a complementary manner.

Very recently, salient dictionary learning was proposed as a way to generalize dictionary-
of-representatives approaches for activity key-frame extraction [19]. The key-frame set
is extracted by simultaneously optimizing the desired summary for maximum recon-
structive ability and maximum saliency. Activity videos are especially suited to such an
approach, since human activities can be easily decomposed into approximately linear
combinations of elementary actions [1], but on the other hand they contain a signifi-
cant number of uninteresting/non-salient video frames that, nonetheless, convey large
reconstructive advantage (e.g., video frames solely depicting the static background, or
containing mostly human body poses common to multiple activity segments).

Following preliminary work in [18], where no saliency term was considered, the
Column Subset Selection Problem (CSSP) was selected to model the reconstruction
term. This was a novel application of the CSSP, mainly employed for feature selection
tasks up to that point. In [19] a fast, randomized, SVD-based two-stage algorithm for
solving the CSSP was adopted from [3] and adapted to salient dictionary learning, while
video frame saliency was computed using a dense inter-frame distance matrix. In [20]
that saliency term was replaced with a much faster to compute Regularized SVD-based
Low-Rank Approximation approach, resulting in state-of-the-art summarization accu-
racy at near-real-time speeds. However, with regard to the reconstruction term, a black
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box of non-negligible computational cost remained in the form of the deterministic sec-
ond stage from [3].

This work further explores the possibilities opened up by CSSP-based modelling
and adopts from [11] a different, non-randomized CSSP solution for the reconstruction
term. It is a greedy, iterative algorithm, adapted here to salient dictionary learning and
coupled with the fast, SVD-based saliency term from [20]. Computational complexity
analysis of all salient dictionary learning and related methods is presented for the first
time. Extensive empirical evaluation of the proposed method is performed under the
setup described in [20]. The results indicate high speed gains while retaining state-of-
the-art summarization accuracy, making the proposed algorithm especially suitable for
big data pre-processing.

2 Method Preliminaries

Below, an input video composed of N frames is represented as a matrix D ∈ RV×N .
Each column vector dj , 0 ≤ i < N , describes a video frame. Moreover, we assume
that the desired summary is a matrix S ∈ RV×C , C << N containing an ordered set of
video key-frames. Its columns are indicated by a binary-valued frame selection vector
s ∈ NN .

2.1 The Column Subset Selection Problem

In the methods this paper improves upon (the no-saliency, dictionary-of-representatives
algorithm [18] and the salient dictionary learning algorithms [19] [20]), the Column
Subset Selection Problem (CSSP) [3] was selected for algebraically modelling the re-
construction term.

Given D and a parameter C << N , the CSSP consists in selecting a subset of
exactly C columns of D, which will form a new V ×C matrix S that captures as much
of the information contained in the original matrix as possible. The goal is to construct
a matrix S ∈ RV×C such that the quantity:

‖D− (SS+)D‖F (1)

is minimized. ‖ · ‖F is the Frobenius matrix norm and S+ is the pseudoinverse of S.
Obviously, S is entirely defined by D and the frame selection vector s.

The CSSP was deemed to be especially suitable for modelling key-frame extraction,
since it results in a small number C of unaltered columns of the original matrix that are
significant in a dictionary-of-representatives sense, with C being strictly user-defined.
However, the problem is considered to be NP-hard [2]. A fast, numerical, randomized
CSSP method operating in two stages [3] was employed as a main building block in
[19] and [20]. The method relied on the SVD decomposition of D.

2.2 Salient Dictionary Learning for Activity Summarization

Salient dictionary learning entails joint optimization of a “reconstruction term” and
a “saliency term”, so as to avoid a summary that contains many uninteresting video
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frames (e.g., depicting the static background) and does not include any outliers. The
related objective is defined in [19] using the CSSP for reconstruction and a vector p for
saliency:

min
s

: ‖D− SS+D‖F − αcsTp, (2)

where α ∈ [0, 1] is a user-provided parameter regulating the contribution of the saliency
component and c is a scaling factor to bring per-video frame saliency value down to the
scale of the dictionary component. p ∈ RN is a precomputed per-frame saliency vector,
assigning a scalar saliency value to each video frame.

In [19], the approximate CSSP algorithm from [3] was coupled with a simple saliency
term. Initially, the saliency term produced a precomputed, per-frame saliency vector p.
Subsequently, video data matrix D was suitably transformed in a manner that took into
account per-frame saliency, before applying the numerical algorithm from [3] to the
modified matrix. The above method implicitly solved the objective from Eq. (2).

In [20] the saliency term was replaced with a Regularized SVD-based Low Rank
Approximation method that significantly reduced the computational overhead. This was
due to the fact that no inter-frame distance matrix needed to be constructed, while the
SVD decomposition of the video data matrix was also required by the employed CSSP
algorithm and, therefore, readily available.

3 Greedy Salient Dictionary Learning

Although the method in [20] is faster and, in general, equally or more accurate than
competing methods, it is still burdened by the second, deterministic stage of the numer-
ical CSSP algorithm from [3] (Rank-Revealing QR decomposition [5] was employed
in both [19] and [20]). Given that the required runtime is a quadratic function of N
(as shown below), minimizing the per-frame computational cost of salient dictionary
learning is essential for successful deployment in big activity video data analysis.

Towards this end, the possibilities opened up for activity video key-frame extrac-
tion by CSSP modelling were explored. In this paper, the numerical, two-stage CSSP
solution for the reconstruction term is entirely replaced by an efficient, iterative, de-
terministic, greedy method [11], adopted from recent CSSP literature and described
below.

At each iteration of the algorithm a single video frame is added to the summary, so
as to greedily minimize the reconstruction error, until the key-frame set contains exactly
C key-frames. The following quantities are defined for the t-th iteration:

1. st−1: the currently extracted key-frame set/summary binary selection vector, pre-
scribing the current summary St−1. It holds that ‖st−1‖0 = t− 1.

2. Rt−1
: the set of the temporal indices of all video frames not contained in St−1. It

contains N − (t− 1) elements, all in the interval [0, N − 1].
3. lt: the temporal index of the video frame d:lt that is actually selected for inclusion

in St during iteration t. Obviously, lt ∈ Rt−1
, but lt /∈ Rt

.
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The method recursively updates two vectors, f ,g ∈ RN . Each one keeps track of a
scalar score for each video frame d:i, 0 ≤ i < N . At the start of the t-th iteration, the
most suitable lt is selected for addition to the extracted key-frame set/summary in the
following manner:

lt = argmax
i

f t−1
i

gt−1
i

, i ∈ Rt−1
, (3)

where f t−1
i , gt−1

i is the i-the entry of current vector f ,g, respectively. Subsequently, f t

and gt are computed, by updating f t−1 and gt−1 based on the value of lt. The formulas
for initializing and updating f and g can be found in [11].

In order to adapt the above method to the proposed framework, p̃ ∈ RN is initially
precomputed once. It is a slightly modified version of p from [20], with its entries (the
per-frame saliency factors) normalized into the interval [0, 1]. Subsequently, the greedy
CSSP algorithm is iteratively executed as described above, but Equation (3) is modified
in the following manner:

lt = argmax
i

(
(1− α)f

t−1
i

gt−1
i

+ αp̃i
f t−1
i

gt−1
i

)
, i ∈ Rt−1

. (4)

where p̃i is the i-th entry of p̃. Thus, at each iteration, vectors f and g are updated
based on the reconstructive advantage currently conveyed by each video frame, but the
actual selection of a candidate video frame for inclusion in the summary also depends
on its precomputed saliency and the provided saliency contribution parameter α. The
algorithm is completed after C iterations.

4 Computational Complexity Analysis

Below, the computational complexity of all CSSP-based activity video key-frame ex-
traction methods is briefly presented for the first time. In [18], the CSSP objective is
directly employed as a fitness function under a genetic algorithm, with no saliency
term considered. Since the computation of S+ runs in O(min{V C2, V 2C}), the en-
tire reconstruction term is dominated by the matrix multiplications in Eq. (1). There-
fore, assuming population size P and G generations, total method complexity is either
O(PGV 2N), if V < C, or O(PGV CN), if V > C.

In [19], the employed CSSP algorithm runs in O(min{V N2, V 2N}) [3], while
the time complexity of the proposed inter-frame distance matrix-based saliency term is
O(V N2). The proposed adaptation of the CSSP method to salient dictionary learning
runs in O(V N). Thus, the overall method complexity is O(V N2).

In [20], the CSSP algorithm from [3] is retained, but a different SVD-based saliency
term is proposed. Given that the SVD decomposition of D can be used for both the
reconstruction and the saliency term, the complexity of the latter isO(V N). Finally, the
adaptation to salient dictionary learning runs in O(V N), as in [19]. Thus, the overall
method complexity is O(min{V N2, V 2N}).

In this paper, the initialization of f and g runs inO(V N2), while the main, iterative
CSSP algorithm runs in O(V NC) [11]. The saliency term from [20] is retained and its
computation is dominated by the SVD decomposition: O(min{V N2, V 2N}). Since
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the per-frame saliency vector only needs to be derived once, replacing Equation (3)
with Equation (4) does not alter its time complexity. Thus, given that C << N , the
overall method complexity is O(V N2).

For comparison purposes, the time complexities of [9], [22] and [8] are O(V CN),
O(CNV 2) and O(V CN2), respectively.

5 Evaluation

In order to empirically evaluate the proposed algorithm, extensive comparisons were
made against a baseline clustering approach [9], random video frame sampling over a
million iterations, as well as competing state-of-the-art methods [8, 18–20, 22], using
three human activity video datasets. The empirical evaluation setup is identical to the
one found in [20]. All method implementations were in MATLAB, except [18] which
was written in C++, using fast linear algebra libraries OpenBLAS [30] and Armadillo
[25]. All experiments were performed on a high-end desktop PC.

Although video descriptors that have been learnt via a neural network are becom-
ing the norm in video summarization [21], we employed a combination of traditional,
hand-crafted low- and mid-level descriptors for video frame representation. Thus, three
different feature descriptors were extracted for each video: LMoD [15], SIFT [13] and
Improved Dense Trajectories (IDT) [29], aggregated per video frame under the Im-
proved Fisher Vector (IFV) approach [24]. IFV codebook size was empirically set to 8,
24 and 32 visual words for IDT, SIFT and LMoD, respectively, leading to total dimen-
sionality of video frame representation (after concatenation) V = 17568. In the case of
[8], vectorized raw image pixel values were employed for video frame representation,
due to the nature of the algorithm.

Single-view subsets of three publicly available, annotated, multi-view activity video
datasets were employed. The datasets were slightly processed to better suit an activity
video summarization task (e.g., several videos, each one depicting a single activity,
were temporally concatenated, so as to form a long video composed of multiple con-
secutive activities). In each case, a specific camera angle was chosen from the original
multi-view dataset for all activity sessions. The processed versions are briefly described
below:

1. The IMPART video dataset [28], depicting 3 actors in 2 different settings: an out-
door one and a living-room. A total of 116 indoor and 214 outdoor activity sessions
with static camera are included, where the actors perform a series of activities one
after another, moving along approximately fixed trajectories via predefined way-
points. 4 different activity types were performed, namely “Walk”, “Hand-wave”,
“Run” and “Other”. The dataset consists of 6 video files with a resolution of 720 ×
540 pixels and mean duration of about 4542 video frames.

2. The IXMAS dataset [31], depicting 10 actors in an indoor setting. A total of 467
activity sessions with static camera are included, where the actors perform a series
of activities one after another, with varying/unconstrained body poses. In total, 11
different activities were performed. The dataset consists of 4 video files with a
resolution of 390 × 290 pixels and mean duration of about 9055 video frames.
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This is the most challenging dataset, due to the low video resolution, the relatively
high number of video frames and activity segments, as well as the very high visual
similarity between video frames belonging to different activity segments.

3. The i3DPOST dataset [12], depicting 8 actors in a blue-screen backdrop. A total
of 104 activity sessions with static camera are included, where either the actors
perform a series of activities one after another, moving along approximately fixed
trajectories, or two actors interact. In total, 12 different activities were performed.
The dataset consists of 3 video files with a resolution of 640× 480 pixels and mean
duration of about 5358 video frames.

The objective Independence Ratio (IR) metric was employed for summarization ac-
curacy evaluation, as in [18–20]. IR scores bypass the subjective, or semi-subjective, na-
ture of traditionally employed video summarization metrics, by treating any two video
frames belonging to the same activity segment as interchangeable and, from the aspect
of its empirical evaluation, reducing activity video summarization to a variant of tem-
poral video segmentation. Given a summary s of an input video D, the number Is of
extracted key-frames derived from actually different activity segments (hereafter called
independent key-frames) is used as an indirect indication of summarization success. Ob-
viously, Is equals the number of different activity segments represented in the summary
s. Thus, the IR score is defined as follows:

IR(s) =
Is
C
, (5)

where C is the total number of requested key-frames. IR scores indicate the percentage
of extracted key-frames derived from actually different activity segments, among the
entire extracted key-frame set (computed using the ground truth).

Tables 1 and 2 present the mean IR scores obtained by all competing methods,
across all datasets, as well as the mean execution times per video frame. For [8, 19, 20]
and the proposed method, only the highest IR results across five tested values of the
saliency contribution parameter (α = 0, 0.25, 0.50, 0.75, 1.00) are reported per dataset.

Algorithm [8] completely fails to handle activity summarization, simple clustering
from [9] performs relativily well, while the proposed method achieves state-of-the-art
IR accuracy on two out of three datasets, at the lowest computational penalty. On IM-
PART, [20] seems to be faster (although with significantly lower IR score), but this
stems from the fact that [20] achieved its best IR score (for that particular dataset) with
α = 0, i.e., without computing the saliency term at all.

Table 1. Mean IR for all competing methods across all datasets (higher is better).

Random Proposed [20] [18] [19] [9] [22] [8]
IMPART 58.86% 77.17% 72.16% 75.85 72.02% 72.94% 68.03% 50.17%
i3DPOST 59.01% 77.78% 75.64% 72.56% 74.39% 72.65% 65.81% 44.87%
IXMAS 59.40% 65.72 66.38% 62.00% 66.22% 65.29% 66.16% 46.66%
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Table 2. Mean runtime per video frame (in milliseconds) for all competing methods across all
datasets (lower is better).

Proposed [20] [18] [19] [9] [22] [8]
IMPART 28.86 17.90 552.92 232.21 76.85 4043.82 427.84
i3DPOST 31.67 42.05 517.80 262.26 70.01 2544.20 385.35
IXMAS 49.07 80.82 734.34 461.15 225.45 8594.31 891.95

Table 3. Mean IR and runtime per video frame for the fastest methods, on the IMPART dataset.

α Proposed-IR [20]-IR Proposed-Time [20]-Time
0.00 75.21% 72.16% 1.26 17.90

0.25 75.18% 69.86% 28.77 45.96
0.50 76.00% 70.40% 28.91 45.28
0.75 77.17% 68.80% 28.86 44.98
1.00 70.30% 56.09% 28.13 36.14

Therefore, Table 3 details the evaluation results of [20] and the proposed method for
all tested values of α, on the IMPART dataset. As it can be seen, the proposed method is
significantly faster for any given α, while for α = 1 (where the corresponding, adapted
CSSP algorithm is executed as a reconstruction term, but only video frame saliency
is actually taken into account for key-frame selection) the proposed method achieves
almost 14% better IR score than [20]. On IXMAS, [20] performs slightly better than
the proposed method, at a significantly higher computational cost.

6 Conclusions

A fast approach to salient dictionary learning for activity video key-frame extraction
is proposed. The method retains the SVD-based saliency term from the fastest relevant
algorithm available up to now, but replaces the numerical CSSP method employed for
reconstruction with a greedy, iterative algorithm, properly adapted to salient dictionary
learning. The result is a very rapid approach that, in general, achieves state-of-the-art
summarization accuracy, while simultaneously significantly outperforming all compet-
ing methods in terms of speed. The proposed algorithm seems especially suitable for
pre-processing large video streams, while greater performance gains are expected in the
future, by employing neurally derived video descriptors and by integrating constraints
in the optimization problem.
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