
Fast, Visual and Interactive Semi-supervised
Dimensionality Reduction

Dimitris Spathis1,2, Nikolaos Passalis1, Anastasios Tefas1

1Aristotle University of Thessaloniki, Greece
2University of Cambridge, UK

Abstract. Recent advances in machine learning allow us to analyze and
describe the content of high-dimensional data ranging from images and
video to text and audio data. In order to visualize that data in 2D or
3D, usually Dimensionality Reduction (DR) techniques are employed.
Most of these techniques produce static projections without taking into
account corrections from humans or other data exploration scenarios. In
this work, we propose a novel interactive DR framework that is able to
learn the optimal projection by exploiting the user interactions with the
projected data. We evaluate the proposed method under a widely used in-
teraction scenario in multidimensional projection literature, i.e., project
a subset of the data, rearrange them better in classes, and then project
the rest of the dataset, and we show that it greatly outperforms com-
petitive baseline and state-of-the-art techniques, while also being able
to readily adapt to the computational requirements of different applica-
tions.
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1 Introduction

Recent advances in statistical machine learning allow us to tackle hard real-world
problems such as machine translation, speech recognition, image captioning and
developing self-driving cars [1]. In order to train machine learning models for the
aforementioned tasks huge amounts of data are required. However, the process
of data collection and processing is costly since human annotators must validate
the ground truth of each dataset. This issue is further aggravated by the limited
involvement of domain experts, who are also potential users of such systems, in
the training process [2].

Interactive systems that learn by users have been proposed during the last
decade for applications like image segmentation [3]. While these systems allowed
to manipulate the input or some parameters of the model, they rarely offered
ways to interact with the data points per se. To further increase the involve-
ment of end-users in training machine learning systems, we also have to think
about the interface and cognitive load we provide them with. In this work we re-
search on dimensionality reduction techniques, which provide ways of projecting
high-dimensional data in 2D. While dimensionality reduction is used for many
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purposes, such as to reduce storage space and preprocessing time, we focus on its
usage for interactive visualization. By visualizing the data in a two-dimensional
(2D) or three-dimensional (3D) space, we make it easier for humans to under-
stand the structure of data in a manner that feels natural.

For a dataset that consists ofN n-dimensional points pi ∈ Rn, dimensionality
reduction (DR) can be defined as a function which maps each point pi ∈ Rn to
a low-dimensional point qi ∈ Rm:

fW : Rn → Rm. (1)

Here, n is typically large (from tens to thousands of dimensions), m represents
number of dimensions in the low-dimensional space, typically 2 or 3, while W
denotes the parameters of the function used to perform the projection.

Even though many dimensionality reduction techniques leverage different
concepts, most of them share a common property: the objective function used
to optimize the final projection is a linear combination of pairwise distances be-
tween the data points. However, this renders most of the existing dimensionality
reduction techniques prone to outliers, while increases the difficulty of interacting
with the data since it is not always straightforward to manipulate the distance
between different points (there is no universally small or large distance). The
aforementioned limitations highlights the need for methods that use bounded
similarity metrics instead of unbounded distance metrics. An illustrative exam-
ple is the recent success of t-SNE [4], which transforms distances to probabilities
using a non-linearity (Gaussian kernel). That way it effectively addresses the
so-called crowding problem [4]. In this work, another recently proposed powerful
similarity-based dimensionality method, the Similarity Embedding Framework
(SEF) [5], is adapted towards interactive visualization tasks.

The main contribution of this paper is the extension of the Similarity Em-
bedding Framework (SEF) towards efficiently handing interactive visualization
tasks for semi-supervised learning. To this end, we adopt a common interaction
scenario in multidimensional projection literature. First, a subset of the data,
called control points, is projected, then the user rearrange them better in classes
or clusters, and finally the rest of the dataset is projected based on that ma-
nipulation. The proposed method is evaluated on four datasets from a diverse
range of domains and it is demonstrated that it outperforms the other evaluated
baseline and state-of-the-art methods. The proposed approach can be combined
with any differentiable projection function, ranging from fast and lightweight
linear projection functions to more powerful kernel projections and deep neu-
ral networks. This allows the proposed method to readily adapt to different use
cases, e.g., a linear projection function can be used for providing lightweight in-
teractive projections on mobile devices with limited computing power or used on
the client-side of a web application, while a more powerful and complex neural
network can be used for scientific visualization tasks, e.g., visualizing and inter-
acting with genome data [6, 7], when more powerful infrastructure is available.

The rest of the paper is structured as follows. First, the related work is
briefly discussed and compared to the proposed approach in Section 2. Then the
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proposed approach is presented in detail (Section 3) and evaluated (Section 4).
Finally, conclusions are drawn and future work is discussed in Section 5.

2 Related work

Popular dimensionality reduction techniques include linear methods, such as
Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA)
[8], and non-linear ones, such as Multidimensional Scaling (MDS) [9], t-Distrib-
uted Stochastic Neighbor Embedding (t-SNE) [4], and Uniform Manifold Ap-
proximation and Projection (UMAP) [10].

A group of literature (multidimensional projection) focuses on observation-
level interaction [11] and uses some seeding direct manipulation points (also
called “control points”), which are a subset of original data points. The intu-
ition goes that by manipulating a subset of data points, a mapping function is
(implicitly or explicitly) learned. Then, this function is used (or approximated)
to project the rest of the dataset. Numerous approaches related to control-point
manipulation have been suggested. The Local Affine Multidimensional Projection
(LAMP) starts by projecting a subset of control points and then interpolates the
remaining points through orthogonal affine mappings, using the Singular Value
Decomposition (SVD) method [12]. The Part-Linear Multidimensional Projec-
tion (PLMP) [13] allows for scaling to big datasets by first constructing a linear
map of the control points using Force Scheme [14]. Next, this mapping is used
to project the the remaining points. Finally, the Kernel-based Linear Projection
(KELP) [15], which is a recent state-of-the-art interactive visualization method,
allows for visualizing how kernel functions project the data in high-dimensional
spaces, while allowing for interacting with the learned projection.

To the best of our knowledge the proposed method is the first interactive
visualization method that uses similarity measures to extract information for
users’ interactions with the data and then learns a projection function by ex-
ploiting this information. Building upon the SEF allows for better handling
possible outliers and provides an intuitive way for users to perform direct ma-
nipulation of data points. Furthermore, the proposed method can be used with
fast linear projection functions, that can be readily implemented on mobile de-
vices or other systems with limited computational power, while at the same time
providing high-quality and responsive interactive projections. Finally, the pro-
posed method can be initialized by cloning any of the existing visualization or
DR methods for providing the initial control points, significantly increasing its
flexibility (note that even methods that do not provide out-of-sample extensions,
such as t-SNE, can be readily used for the initialization).

3 Proposed Method

First we briefly review the Similarity Embedding Framework [5], upon which
the proposed method is built. Then, we derive and discuss the proposed fast
interactive data visualization method.
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Let S(xi,xj) be the pairwise similarity between the data points xi and xj .
Note that a similarity metric S is a bounded function that ranges between 0 and
1 and expresses the proximity between two points. Then, the similarity matrix
of the projected data is defined as [P]i,j = S(fDR(xi), fDR(xj)), where i is a
row and j is a column of this matrix and fDR is the projection function.

SEF’s main goal is to learn a projection in which the similarities in the low-
dimensional space, i.e., in our case the visual space, are as close as possible to
a selected “target”. The target similarity matrix T is a square matrix that can
be the result of many methods, such as direct manipulation of data points (as
in out case), or other DR techniques (if we want to mimic them), such as PCA,
LDA, t-SNE, etc. In order to learn the projection function fDR(x) we optimize
the following objective function:

Js =
1

2 ‖M ‖1

N∑
i 6=j

[M]i,j([P]i,j − [T]i,j)
2, (2)

where M is a matrix acting as a weighting mask defining the importance of
attaining the target similarity of the data and ‖M ‖1 is the l1 norm of matrix M.
When each data point pair achieves its target similarity, the objective function
(2) is minimized, while when a pair has different similarity from its target, it is
getting penalized.

Although T can be any target that we want to achieve during the projection,
we use the Gaussian kernel (also known as Heat kernel) to define the similarity
between the projected points, i.e.:

S(xi,xj) = exp(− ‖ xi − xj ‖22 /σp), (3)

where σp acts a scaling factor. Therefore, the final similarity matrix P is defined
as:

[P]i,j = exp(− ‖ fDR(xi)− fDR(xj) ‖22 /σp), (4)

Note that among the options that the SEF provides, is to clone existing DR
techniques. Let c(x) be a technique to be cloned. Then, SEF can mimic c(x) by
setting the target matrix as:

[T]i,j = exp(−‖ c(xi)− c(xj) ‖22
σcopy

), (5)

where σcopy is the scaling factor used to calculate the similarities between the
low-dimensional points, as projected using the techniques that is to be cloned.
This approach can be used to initialize the employed projection function for pro-
viding the initial control points. Note the great flexibility of the proposed method
that can clone virtually any visualization or DR method, including methods that
do not provide out-of-sample-extensions, such as t-SNE.

The projection function fDR could be defined in multiple ways, ranging from
simple fast linear transformations to non-linear methods, such as kernel pro-
jections and deep neural networks. In order to minimize the loss in objective



Fast, Visual and Interactive Semi-supervised Dimensionality Reduction 5

function (2), gradient descent is used. Therefore, it is required to calculate the
derivative of the objective function Js with respect to the parameters of each
projection.

One of the simplest projection methods is the linear transformation of the
input space, such that fDR(x) = WTx, where W is the projection matrix.
Let the relationship between the original data X and the projected Y be that
of yi = fDR(xi). The derivative of the objective function Js when a linear
transformation is used is calculated as:

∂Js
∂[W]kt

=
1

‖M ‖1

N∑
i=1

N∑
j=1

[M]i,j([P]i,j − [T]i,j)
∂[P]i,j
∂[W]kt

, (6)

where
∂[P]i,j
∂[W]kt

= − 2

σp
[P]i,j([Y]it − [Y]jt)([X]ik − [X]jk). (7)

The objective function (2) is optimized using gradient descent:

∆W = −η ∂J
∂W

, (8)

where η is the learning rate. In this work the Adam algorithm is used for the
optimization [16], since it has been proved to be fast and reliable.

On the other hand, kernel methods are known to provide superior solutions,
since they transform the input space into a higher dimensional one in order to
solve the problem in a linear manner there. Let Φ = φ(X) be the matrix of data
in the high dimensional space (also known as Hilbert space), where φ(x) is a
function that projects the data in a higher dimensional space. In a similar way
with the linear version, we seek to learn a linear mapping from the Hilbert space
into the visual space. We use the Representer theorem to express the matrix W
as a linear combination of the training data X:

W = φ(X)T = ΦTA, (9)

where A is the coefficient matrix of the linear combination. Therefore, the final
projection is derived as:

YT = WTΦT = ATΦΦT = ATK, (10)

where K = ΦΦT is the kernel matrix, i.e., it contains the inner products of data
in the high-dimensional space. Similar to most kernel techniques, we exploit
the so-called kernel trick, meaning that we can calculate the matrix K without
explicitly calculating the inner products in Hilbert space. In this work, we use
the popular RBF kernel:

[K]i,j = exp(‖ xi − xj ‖22 /γ2). (11)

Compared to the linear version we have to learn the matrix A instead of the

matrix W. Regarding the optimization, the derivative
∂[P]i,j
∂[A]kt

is similarly calcu-

lated:
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∂J

∂[A]kt
=

1

||M||1

N∑
i=1

N∑
j=1

[M]ij([P]ij − [T]ij)
∂[P]ij
∂[A]kt

, (12)

where
∂[P]ij
∂[A]kt

= − 2

σP
[P]ij([Y]it − [Y]jt)([K]ik − [K]jk).

Algorithm 1 Interactive Similarity-based Dimensionality Reduction Learning
Algorithm

Input: A matrix X = [xi, ...,xN ] of N data points, the subset of the control points
Xs, and a technique s(x) that can be used for initializing the projection

Output: Projected dataset Ỹ.
1: procedure InteractiveDRLearning
2: T ← clone (s(Xs)) . Clone Force Scheme, t-SNE, or any other DR technique

using (5).
3: W orA← SimilarityEmbeddingLearning(Xs,T ) . Learn projection using (6).
4: Ys ← project (Xs) . Project control points using projection matrix W or A.

5: Ỹ s ← manipulate (Y s) . Adjust control points on interactive scatter plot.

6: T̃ ← clone ( Ỹs) . Clone control points using (5).

7: W̃ orÃ← SimilarityEmbeddingLearning(Ỹs, T̃ ) . Learn projection using (6).

8: Ỹ ← project (X) . Project original dataset using projection matrix W̃ or Ã.

9: return the projected dataset Ỹ

The complete proposed interactive dimensionality reduction learning algo-
rithm is summarized in Algorithm 1. More formally, let X = [xi, ...,xN ] be the
data matrix (in the original feature space) and Xs = [xsi , ...,xsNi

] a subset of
the data that is used as control points. Let Ys be the projection of control points
Xs in the visual space and Y the final projection of X in the visual space. First,
the projection is initialized by cloning an existing technique (lines 2-3). The user
interacts and manipulates the control points Ys and their respective coordinates

producing Ỹs (lines 4-5). Finally, the previous projection is optimized according
to the user’s interaction (lines 6-7) and the whole dataset is visualized by cal-

culating Ỹ (line 8). Note that tilde’d characters are used to denote the results
after the manipulation.

It worth noting the great flexibility of the proposed approach. The method
can be initialized by cloning any of the existing visualization or DR methods,
e.g., t-SNE, UMAP, etc. Then, any differentiable projection function can be
used to project the data into the lower dimensional space. The complexity of the
projection function can be adapted to the needs of each application, as it was
already mentioned before. For example, a linear projection function can be used
for mobile devices, while more powerful non-linear projection functions can be
used when more computational resources are available. Note that the complexity
of kernel methods can be also readily reduced using various methods, such as
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using low-rank Nyström approximations [17]. Furthermore, the optimization can
be adapted to the available memory by using small batches that fit in memory
instead of computing the whole similarity matrix described in (4). Note that in
this case the samples must be appropriately shuffled before each optimization
epoch to ensure that different data pairs are used for the optimization.

4 Experiments

For evaluating the proposed techniques, the following datasets from a wide range
of domains are used: a handwritten digit recognition dataset (MNIST) [18], an
outdoor image segmentation dataset (Segmentation) [19], a breast cancer diag-
nosis dataset (Cancer) [19] and a chemical–wine recognition dataset (Wine) [19].
The used datasets are summarized in Table 1.

Table 1. Description of the datasets used for the conducted experiments.

Dataset Size Dimensions

MNIST 60000 784
Segmentation 2100 19
Cancer 569 30
Wine 178 13

To ensure a fair comparison with other techniques proposed in the literature
we use the same control points and the same manipulations for all the evaluated
methods. That is, the same control points after the user’s manipulations are
fed into the proposed technique and the other evaluated techniques, i.e., the
LAMP, the PLMP and the KELP. The public available implementation of each
of these techniques was used in the conducted experiments, while the default
parameter selection procedure was used. Also, the number of iterations of our
optimization is fixed to 500. By inspecting the loss minimization curve during
the experiments though, we saw that it converges way before the 500th iteration
most of the times. With that in mind, our computation time could be even lower.

In the conducted experiments we estimate the class separation, clustering as-
signment, and neighbor error. The class separation is evaluated with the nearest
centroid algorithm. Clustering assignment is measured with the Silhouette coef-
ficient [20], that measures the cohesion and separation between grouped data. In
order to visualize the neighbor error per data point, we calculate the 10 neigh-
bors of each point in the visual space and we sum their Euclidean distance in the
high-dimensional space. This score is then normalized to [0,1], so that a point
that its 2D neighbors are far in the feature space, gets a high error close to 1.

The class separation evaluation results are shown in Table 2. For the MNIST
dataset 1240 digits that belongs in four classes (2, 4, 7 and 9) were used. As pro-
posed in the literature [13],

√
n control points are used, where n is the dataset
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Table 2. Mean classification precision of projected datasets after manipulation of
control points. Best results marked bold. Standard deviation of 10 runs in parenthesis.

Data Initialization
Nearest Centroid

KELP LAMP PLMP
Proposed

Linear Kernel

Wine
PCA 66.11 (6.71) 59.86 (10.42) 58.79 (9.93) 81.98 (7.23) 71.56 (4.09)
tSNE 61.42 (4.95) 63.52 (7.23) 52.63 (8.92) 62.50 (13.04) 70.19 (4.44)
Force 62.76 (11.07) 61.10 (11.45) 52.45 (9.30) 57.97 (7.03) 63.95 (6.33)

Cncr
PCA 89.84 (2.21) 83.38 (3.22) 63.04 (6.12) 71.77 (7.83) 90.68 (0.75)
tSNE 87.91 (5.01) 82.87 (2.54) 61.74 (5.35) 72.17 (4.94) 90.95 (1.80)
Force 86.99 (5.31) 83.97 (1.78) 59.91 (4.89) 74.37 (5.34) 87.84 (8.14)

Segm.
PCA 58.37 (6.01) 50.32 (6.33) 44.20 (8.84) 50.45 (11.05) 60.98 (5.52)
tSNE 62.43 (4.79) 53.91 (4.11) 44.24 (6.96) 55.59 (11.72) 64.77 (3.50)
Force 59.70 (5.60) 53.44 (4.95) 39.43 (8.79) 54.71 (6.06) 63.40 (4.22)

MNIST
PCA 63.12 (5.59) 72.79 (5.84) 29.67 (4.30) 36.04 (3.10) 77.92 (4.53)
tSNE 59.85 (11.84) 74.00 (3.43) 29.72 (3.62) 39.11 (4.06) 68.57 (5.73)
Force 60.87 (10.52) 72.20 (5.32) 31.76 (2.31) 45.40 (6.32) 75.52 (5.90)

size. The proposed technique, especially when used with a kernel-based pro-
jection function, almost always outperforms all the other compared techniques,
regardless the used initialization scheme and dataset.

Figure 1 illustrates the projected points along with their classes for all the
evaluated techniques using the Segmentation dataset (the kernel variant is used
for the proposed method), while in Figure 2 the Cancer dataset is visualized
(again the kernel variant of the proposed method is used). The proposed method
always leads to better class separation compared to the proposed methods, as
well as it provides more stable behavior on previously unseen data (note that
the PLMP and the KELP methods collapses in some cases).

Next, we evaluate the proposed method using a clustering setup (the number
of clusters equals the number of classes) using the silhouette coefficient which
attempts to count how tightly grouped all the data in each cluster are. Note
that the silhouette coefficient normally ranges from -1 to 1. However, to improve
the readability of results, values have been scaled to [-100, 100]. The results
are reported in Table 3. The proposed technique achieves the highest score in
every dataset, while the kernel version of the proposed technique still greatly
outperforms the linear variant.

Table 4 shows the neighbor error, which evaluates how far the 10 neighbors
of each point in the visual space are in the original high-dimensional space.
As an error metric, lower-values indicate better projections. For the neighbor
error metric, the results are more diverse than the previous two metrics. While
the proposed kernel version performs considerably better than the linear and
baselines in first two datasets (Wine and Cancer), it presents similar results with
the linear and baselines in the other two datasets (Segmentation and MNIST).
The neighbor error for the Cancer dataset (same setup as before) is visualized in
Figure 3. Note that the proposed method better captures the manifold structure
of the data, creating smooth low neighbor error regions.
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Control points Manipulated control points

Proposed LAMP

PLMP KELP

0 1 2 3 4 5 6
Class label

Fig. 1. Visualizing the Image Segmentation dataset. Classes correspond to the following
labels: green – sky, orange – cement, purple – window, bordeaux – brickface, yellow –
foliage, mustard – path, gray – grass. (figure best viewed in color)

Table 3. Average silhouette coefficient after manipulation of control points. Best re-
sults marked bold. Standard deviation of 10 runs in parenthesis.

Data Initialization
Silhouette Coefficient

KELP LAMP PLMP
Proposed

Linear Kernel

Wine
PCA 12.52 (7.00) -9.28 (3.69) 0.55 (4.63) 28.13 (12.22) 19.18 (4.23)
tSNE 11.95 ( 6.58) -14.70 (4.56) -0.76 (6.05) 8.23 (8.58) 14.49 (8.72)
Force 15.96 (7.47) -11.41 (5.29) 1.60 (4.44) 4.71 (4.75) 12.11 (9.35)

Cncr
PCA 55.15 (13.60) 34.14 (4.26) 12.22 (5.49) 19.26 (7.63) 57.93 (4.75)
tSNE 53.75 (13.78) 36.07 (4.22) 10.89 (3.13) 21.64 (5.60) 60.35 (5.04)
Force 52.34 (15.51) 36.01 (5.09) 9.08 (3.56) 22.74 (6.93) 56.15 (10.45)

Segm.
PCA 6.02 (5.87) -0.61 (5.26) -11.66 (10.09) -0.74 (10.87) 16.00 (5.07)
tSNE 7.11 (2.95) 0.02 (3.52) -10.58 (7.63) 5.54 (10.53) 18.56 (4.49)
Force 6.35 (4.39) -0.70 (3.68) -15.48 (5.60) 1.55 (7.16) 17.12 (3.54)

MNIST
PCA -24.39 (5.28) 17.28 (4.71) -6.78 (0.93) -6.38 (1.31) 25.14 (4.65)
tSNE -22.09 (9.28) 19.26 (3.43) -6.05 (1.75) -4.85 (2.00) 13.42 (6.81)
Force -28.30 (7.97) 17.65 (4.68) -6.13 (0.95) -3.02 (2.85) 22.07 (6.98)
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Control points Manipulated control points

Proposed LAMP

PLMP KELP

0 1
Class label

Fig. 2. Visualizing the Cancer dataset. (best viewed in color)

Table 4. Average Neighbor error after manipulation of control points. Best results
marked bold. Standard deviation of 10 runs in parenthesis.

Data Initialization
Neighbor Error

KELP LAMP PLMP
Proposed

Linear Kernel

Wine
PCA 20.77 (5.84) 26.24 (3.74) 27.73 (4.01) 24.63 (2.19) 8.33 (4.87)
tSNE 18.56 (3.41) 27.75 (6.46) 27.86 (4.42) 25.92 (6.49) 7.27 (2.34)
Force 19.03 (4.28) 26.36 (5.39) 25.34 (2.68) 25.81 (3.72) 12.52 (5.60)

Cncr
PCA 12.37 (3.56) 13.48 (1.48) 15.52 (2.30) 13.40 (2.90) 5.23 (1.44)
tSNE 11.51 (2.39) 13.58 (2.31) 15.69 (2.47) 14.48 (2.15) 8.44 (1.78)
Force 12.43 (2.66) 12.04 (1.66) 13.62 (0.84) 14.04 (2.23) 7.49 (1.95)

Segm.
PCA 8.19 (1.38) 7.00 (0.83) 9.11 (1.12) 8.83 (1.74) 6.00 (0.83)
tSNE 8.52 (0.64) 4.90 (0.65) 8.02 (0.95) 7.51 (1.20) 5.84 (0.77)
Force 7.69 (0.79) 5.01 (0.90) 7.83 (1.47) 7.27 (1.50) 5.57 (0.97)

MNIST
PCA 50.19 (2.72) 48.96 (3.20) 46.31 (3.23) 44.50 (4.10) 47.66 (2.88)
tSNE 51.97 (3.20) 50.60 (1.63) 45.16 (4.94) 45.10 (3.04) 48.03 (2.40)
Force 50.15 (3.76) 50.09 (3.34) 46.57 (3.32) 46.87 (2.55) 47.91 (2.54)
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Proposed LAMP

PLMP KELP

Low High
Neighborhood error

Fig. 3. Visualizing the neighbor error for the Cancer dataset. (best viewed in color)

Finally, we evaluate the effect of the number of used control points on the
quality of the learned projection. The results are shown in Figure 4 using the
proposed method and a linear projection function (PCA is used for the initializa-
tion). Even when a small number of control points is used, the proposed method
outperforms the other methods. Qualitatively similar results were obtained us-
ing different initializations (e.g., tSNE or Force), as well as for other metrics and
datasets.

Fig. 4. Nearest Centroid precision in relation to control point increase (over the baseline
proposed in the literature, i.e.,

√
(n)) on the Wine dataset.
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5 Conclusions

In this work, a novel interactive DR framework that is able to learn the opti-
mal projection by exploiting the user interactions with the projected data was
proposed. The proposed method can be combined with a number of different
projection functions to readily adapt to the needs of each application, rang-
ing from fast, lightweight linear projection functions to powerful deep neural
networks. The user interaction was modeled as a target similarity matrix that
was used to learn either a fast linear or a non-linear kernel projection using
gradient descent. The proposed method was evaluated using a common inter-
action scenario in multidimensional projection literature, i.e., a subset of the
data was projected, the data were rearranged in classes or clusters, and then a
new projection function was learned based on that manipulation. The proposed
method outperforms competitive baseline and state-of-the-art methods in the
used benchmark datasets, while also being able to provide fast lightweight inter-
active projections. Namely, our methods improve the classification precision in
Wine dataset by 16–29%, in Cancer by 1–31%, in Segmentation by 2–25% and
in MNIST by 4–48%. Similarly, our methods improve the clustering coefficient
in Wine dataset by 12–43, in Cancer by 5–51, in Segmentation by 11–30 and in
MNIST by 6–53. There are several interesting future work directions. First, the
target similarity matrix can be enriched with high-dimensional neighbor infor-
mation using the rest of the dataset. Preliminary experiments using image and
text datasets show promising results. It can be also used for interactive end-
to-end-learning for manifold exploration [21, 22], domain adaptation [23] and
transfer learning [24], as well as to interact with multimodal data [25, 26].
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