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Abstract—Using Unmanned Aerial Vehicles (UAVs), also
known as drones, for covering public sport events, such as
bicycle races, is becoming increasingly popular. Even though the
problem of controlling the flight path of a drone is well studied
in the literature, little work has been done on controlling the
shooting camera for producing professional grade video footage.
In this work we propose a fast and efficient proportional-integral-
derivative (PID) based control algorithm that rely solely on 2D
visual information and we demonstrate that it is possible to
accurately control the camera without inferring the 3D position
of the target. To ensure that the proposed method will not
exhibit undesired behavior, a genetic algorithm is used to tune
its parameters using a properly defined fitness function. The
proposed method is evaluated using two datasets that contain
actual drone footage: a dataset that contains videos of a single
cyclist, and a dataset that contains actually footage from a bicycle
race event, the Giro D’Italia bicycle race.

I. INTRODUCTION

Using Unmanned Aerial Vehicles (UAVs), also known as
drones, for covering public sport events, such as bicycle races,
is becoming increasingly popular, since drones are capable of
shooting spectacular videos that would otherwise very difficult
and expensive to obtain. However, using a drone in a profes-
sional shooting scenario requires at least two operators, one for
controlling the flight path of the drone and avoiding possible
hazards, and one for controlling the shooting camera [1], [2].
The problem of controlling the flight path of a drone, using
either visual or landmark/map information, is well studied in
the literature [3], [4], [5], [6], [7], [8]. On the other hand, little
work has been done on controlling the shooting camera of a
drone for producing professional grade video footage [1], [9].

To tackle the problem of controlling the shooting camera
the 3D location of the main actor (target), e.g., a cyclist, is
usually used [10]. However, acquiring a reliable estimation of
the 3D position of a target requires either a target equipped
with an accurate localization device, e.g., Radio Frequency
Identification (RFID) [11], and/or Global Positioning System
(GPS) devices [12], or a drone equipped with sensors that
can be used to infer the 3D position of the target, e.g., a
LIDAR [13]. However, it is not always possible to have targets
equipped with localization devices, while using extra drone
equipment, such as LIDAR, increases the drone’s weight and
reduces its flight time. Furthemore, geometry-based camera
control requires careful calibration of the resulting system as

well as very accurate localization devices (especially when
used for difficult and precise shots, such as close-ups).

To overcome the aforementioned limitations, we propose
a fast and efficient method that is capable of accurately
controlling the shooting camera of a drone using only visual
2D information. To this end, a 2D target detection [14], or
tracking algorithm [15], is used to locate a target in each frame
and then a proportional-integral-derivative (PID) controller is
employed to appropriate control the pan, tilt and zoom of
the camera according to the specification of each shot. The
proposed approach is also closer to the way that humans
perform camera control, i.e., we control the camera and the
zoom to maintain the target into a specific part of the shot
without calculating its precise position. The different dynamics
of each shot are effectively handled by an appropriately tuned
PID controller. Also, note that if the target is already tracked,
e.g., for controlling the flight path of the drone, then the 2D
position of the target will be already available. In this case,
the proposed method can use this information to control the
camera of the drone with minimal computational overhead,
since there is no need to use a separate detection/tracking
algorithm. Finally, note that other tasks, such as crowd de-
tection [16], pose estimation [17], [18], and face detection and
recognition [19], [20], might also ran simultaneously limiting
the available computational resources. Thus, it is critical that
a lightweight approach, that possibly exploits information that
has been already extracted by other visual analysis tasks, will
be used for controlling the camera.

The main contribution of this paper is the proposal of
a visual information-based camera control algorithm. To the
best of our knowledge, this is the first time that 2D visual
information is directly used, without inferring the 3D position
of the target, for controlling the camera of a drone for cine-
matography tasks using a fast and efficient PID-based control
algorithm. A genetic algorithm is used to tune the parameters
of the PID controller in order to maximize a fitness function
that measures the quality of the resulting shots. That way,
we ensure that the obtained PID controller will not exhibit
undesired behavior, e.g., losing the targets or lagging behind
them. The proposed method is evaluated using two datasets
that contain drone footage: a dataset that contains videos of a
single cyclist, and a dataset that contains actually footage from
a bicycle race event, the Giro D’Italia bicycle race.



The rest of the paper is structured as follows. In Section II
the proposed method along with the proposed tuning algorithm
are presented in detail. Next, in Section III, the proposed
method is evaluated using two datasets that contain actual
drone footage. Finally, conclusions are drawn and future work
is discussed in Section IV.

II. PROPOSED METHOD

Assume that an object detector [14], or an object
tracker [15], is used to provide the minimum enclosing bound-
ing box B of an object of interest, e.g., a cyclist. Let (b

(t)
x , b

(t)
y )

be the center of the bounding box B at time t. The area of
the box B can be calculated as b(t)a = b

(t)
w b

(t)
h , where b(t)w and

b
(t)
h are the width and the height (at time t) of the bounding

box respectively. To simplify the presentation of the method
we assume that both the coordinates and the width/height of
the bounding box are normalized in the interval 0 . . . 1. Then,
we can define the horizontal control error, the vertical control
error and the zoom control error using the following vector:

e(t) = (b(t)x , b(t)y , b(t)a )− (dx, dy, da) ∈ R3, (1)

where (dx, dy) is the target center position of B and da is
the target area (frame coverage). The targets are set according
to the specifications of each shot type, e.g., using the rule of
thirds [21]. The control process is illustrated in Figure 1. The
camera must be appropriately controlled in order to maintain
the center of the bounding box at the specified target position
(denoted by D) as well as keep the bounding box at the
specified target size by controlling the zoom.

Proportional-integral-derivative (PID) controllers are suc-
cessfully used in a wide range of domains, ranging from
controlling heavy industrial equipment to everyday applica-
tions, due to their ability to perform accurate control avoiding
unwanted oscillations and effectively responding to distur-
bances [22]. In this work a PID controller is used to control
the camera inputs, i.e., its pan, tilt and zoom. The output of
the PID controller is defined as follows:

u(t) = Kpe
(t) + Ki

∫ t

0

e(τ)dτ + Kd
de(t)

dt
, (2)

where all the operators are applied element-wise and Kp ∈ R3,
Ki ∈ R3, and Kd ∈ R3 are the coefficients of the proportional,
integral and derivatives terms. The output of the controller is
a vector containing the control commands for the horizontal,
vertical and zoom controls, i.e., u(t) = (u

(t)
x , u

(t)
y , u

(t)
z ).

Tuning the parameters of the PID controller (Kp, Ki

and Kd) is not a straightforward task [23]. In this work
we employ a genetic algorithm strategy [24], [25], to tune
the parameters of the PID controller towards optimizing a
fitness function that express the quality of the obtained shots.
Genetic algorithms allows for obtaining solutions to difficult
optimization problems using techniques, such as crossover
combination and mutation of the solutions, inspired by the
process of natural selection [25]. The following process was
used to optimize the parameters of the PID controller:

1) An initial population of Ninit possible parame-
ters/solutions is created. Each parameter is repre-
sented using 16-bit floating point numbers according
to the standard IEEE 754 representation [26].

2) The population is replaced by combining the fittest
solutions (as evaluated using a fitness function F)
using the uniform crossover operator [25]. Mutation
(random bit flips) with rate pm = 10−2 is also used.
Furthermore, the two best solutions of the previous
population are directly passed into the new population
pool (elitist selection).

3) The previous step is repeated for Niters times and
the best solution, according to the fitness function F ,
is selected.

It is evident that the quality of the obtained solution
(controller) crucially depends on the way that the fitness
function is defined. A simple function that measures the mean
control fitness as the inverse of the absolute control error can
be used:

F = (
1

t

∫ t

0

||e(τ)||1dτ)−1, (3)

where ||x||1 is the l(1) norm of the vector x. However, in
the conducted experiments it was established that even though
maximizing Eq. (3) leads to controllers that can accurately
follow the tracked objects, it can cause unwanted camera
oscillations. To overcome this issue we modify Eq. (3) by
including a term that measures the stability of the obtained
shots. There are several different ways to define the stability
of the camera control. In this work, we estimate the stability of
the control by the slope of the error surface (having small error
derivatives means that there is no sudden movements that can
possibly lead to loosing the tracked object or degenerating the
quality of the resulting video). Therefore, the fitness function
is redefined as:

F = (
1

t

∫ t

0

||e(τ)||1dτ + α
1

t

∫ t

0

||de
(τ)

dτ
||1dτ)−1, (4)

where α is the weight of the term that measures the stability
of the obtained shots. Maximizing Eq. (4) leads to a controller
that can accurately follow the tracked object, without lagging
behind the current object position and avoiding unnecessary
oscillations. Since the designed controller operates in discrete
time the fitness is estimated as follows:

F = (
1

N

N∑
k=0

||e(k)||1d+ α
1

N

N∑
k=1

||e
(k) − e(k−1)

∆t
||1)−1 (5)

where N is the number of performed control steps and ∆t is
the time interval between two control steps.

III. EXPERIMENTAL RESULTS

In this Section the experimental evaluation of the pro-
posed approach is presented. First, the experimental setup is
presented and then the experimental results are reported and
discussed.

A. Experimental Setup

A camera control simulation environment was used for
tuning the parameters of the proposed technique and evaluating
its performance. To simulate the control of the camera using
video streams the following process is used. First, a camera
window is defined inside the input video frames. Then, the
camera control commands are translated into movements of



Fig. 1. Camera control using 2D visual information. The camera is appropriately controlled to ensure that the bounding box B reaches its target position and
size D.

TABLE I. DIFFERENT EVALUATION SETUPS

Setup dx dy da Used for tuning
Setup 1 0.5 0.5 0.5 Yes
Setup 2 0.2 0.7 0.4 Yes
Setup 3 0.7 0.2 0.2 Yes
Setup 4 0.4 0.6 0.6 No
Setup 5 0.1 0.4 0.1 No

this window, e.g., moving the camera left would appropriately
move the window to the left, while zooming the camera would
make the window smaller. The left/right/up/down camera
movements cause an additive translation of the window, while
zooming in/out cause a multiplicative translation, i.e., the size
of the window is translated as w(t+1)

a = w
(t)
a (1+u

(t)
z )2, where

w
(t)
a is the area covered by the window in the t-th frame and

u
(t)
z the output of the controller.

Two datasets were used for the conducted experiments. The
first one, called DRONE-S in this work, is a dataset composed
of 3,251 frames of annotated drone footage of a single cyclist
in various settings collected from YouTube. The training set,
used for tuning the PID controller, is composed of a small
part of the dataset (510 frames), while the rest of the dataset
(2,741 frames) are used to evaluate the performance of the
algorithm. The other dataset, called GIRO-D, is composed of
5,000 frames of actual footage of the Giro D’ Italia bicycle
race, where either one individual cyclist is tracked or a crowd
of cyclists (if the drone is far away from the cyclists).

To evaluate the proposed technique under a wide range
of shooting scenarios five different evaluation setups were
used. For each of them a different target D was used. Table I
summarizes the used evaluation setups. Note that only three
of them (Setup 1, 2 and 3) were used for tuning the PID con-
troller, while all of them were used to evaluate its performance.
Using two additional evaluation setups in the testing allows for
evaluating the performance of the controller on scenarios that
were not seen during the tuning process.

For the genetic optimization algorithm a pool of 50 so-
lutions was used and the optimization ran for 50 iterations.
The initial random pool was generated using Gaussian noise
N (µ, σ), where µ is the mean and σ is the standard devia-
tion. Note that initializing the solution pool into a relatively
good region of the solution space can significantly accelerate

TABLE II. DRONE-S: EVALUATION RESULTS

The weighted control error E is reported for the five different evaluation
setups.

Method Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
Baseline 0.735 0.685 0.485 0.822 0.385
Best Random 0.616 0.571 0.382 0.709 0.323
Optimized 0.547 0.475 0.296 0.651 0.242

TABLE III. GIRO-D: EVALUATION RESULTS

The weighted control error E is reported for the five different evaluation
setups.

Method Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
Baseline 0.746 0.666 0.734 0.695 0.736
Best Random 0.737 0.659 0.696 0.711 0.753
Optimized 0.702 0.550 0.644 0.667 0.693

the convergence of genetic algorithms. Therefore, the initial
random solutions for the parameter Kp were generated using
N (10−2, 10−2), whileN (10−4, 10−4) was used for generating
the solutions for the Ki and Kd parameters. It was experimen-
tally established that solutions in this region provide qualitative
good control results. The weighting parameter of the fitness
function was set to α = 0.5 for all the conducted experiments.
Using larger values for α allows for learning controllers that
have exhibit more stable behavior. However, this can decrease
the ability of the controller to track fast moving targets.

B. Experimental Evaluation

First, the evaluation results using the test split of the
DRONE-S dataset for the five different evaluation setups are
reported in Table II. The weighted sum of the control and
stability error, i.e.,

E =
1

N

N∑
k=0

||e(k)||1d+ α
1

N

N∑
k=1

||e
(k) − e(k−1)

∆t
||1 (6)

is reported. The proposed optimization technique is compared
to both the best solution found in the initial pool of solutions
(called “Best Random”), as well as to the baseline solution
selected by a few visual experiments (called “Baseline”, Kp =
(10−2, 10−2, 10−21) and Ki = Kd = (10−4, 10−4, 10−4)).
The proposed optimization technique significantly reduces the



Baseline Best Random Optimized

Fig. 2. Sample Frame 1: Comparison between the “Baseline” (left), “Best Random” (center) and “Optimized” (right) solutions. The red box corresponds to
the camera, while the blue box to the tracked cyclist. The actual video frame was removed to comply with the video license. (Figure best viewed in color)

Baseline Best Random Optimized

Fig. 3. Sample Frame 2: Comparison between the “Baseline” (left), “Best Random” (center) and “Optimized” (right) solutions. The red box corresponds to
the camera, while the blue box to the tracked cyclist. The actual video frame was removed to comply with the video license. (Figure best viewed in color)

weighted sum of the control and stability error over both the
baseline and the best random solution for all the evaluated
setups. The evaluation results for the GIRO-D dataset are
shown in Table III. Again, using the proposed technique to tune
the PID controller leads better results, significantly reducing
the total error for the evaluated setups.

We have also performed a qualitative analysis to validate
the improved performance of the tuned controller. Two sample
frames where the three controllers are compared are shown
in Figures 2 and 3. Note that the actual frame of the video
was removed to comply with the video license. The red
box corresponds to the camera, while the blue box to the
tracked cyclist. The target was set to the center of the camera,
i.e., (dx, dy) = (0.5, 0.5), while the target area was set to
0.2. The first two non-optimized controllers are unable to
promptly respond to sudden movements and appropriately
control the camera. On the other hand, the tuned controller is
able to accurately track the cyclist. We have also observed that
the optimized controller can sometimes respond more slowly
to zoom changes. However, this behavior seems especially
important to avoid loosing the target and provides smoother
and more stable videos.

IV. CONCLUSION

In this work a method for controlling the shooting camera
of a drone using solely 2D visual information was proposed.
After detecting and tracking the target, a PID controller was
used to issue the appropriate commands to the camera. Hence
we demonstrated that it is possible to perform purely visual
camera control, in a way similar to the way humans control
the camera, avoiding the need for accurately localizing the
target. A genetic algorithm was used to tune the parameters of

the controller and ensure that the tracked object is accurately
followed by the camera, without lagging behind the current
object position and avoiding unnecessary oscillations. Two
datasets, including one dataset that contains footage from a
real cyclist event, were used to evaluate the proposed method
and demonstrate the ability of the proposed approach to
effectively control the camera and provide professional grade
video footage.

There are several interesting future work directions. First,
more advanced “cinematography”-oriented fitness functions
can be defined to allow for tuning the controller towards
more specific shot requirements. Furthermore, since different
shots might require different behavior from the controller,
the parameters can be replaced on demand according to the
requested shot type (similar to gain scheduling strategies [27]).
Finally, optimal control techniques, such as reinforcement
learning [28], can be also used in a similar manner to control
the camera using only 2D visual information. Neural PID
controllers approaches [29], possibly combined with compact
representations that carry information extracted from the cur-
rent frame [30], could be also used for learning a lightweight
neural PID controller end-to-end.
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