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Abstract—Transferring the knowledge from a large and com-
plex neural network to a smaller and faster one allows for
deploying more lightweight and accurate networks. In this paper,
we propose a novel method that is capable of transferring the
knowledge between any two layers of two neural networks by
matching the similarity between the extracted representations.
The proposed method is model-agnostic overcoming several
limitations of existing knowledge transfer techniques, since the
knowledge is transfered between layers that can have different
architecture and no information about the complex model is
required, apart from the output of the layers employed for the
knowledge transfer. Three image datasets are used to demonstrate
the effectiveness of the proposed approach, including a large-
scale dataset for learning a light-weight model for facial pose
estimation that can be directly deployed on devices with limited
computational resources, such as embedded systems for drones.

I. INTRODUCTION

Transferring the knowledge from a larger neural network to
a smaller and faster one allows for deploying more lightweight
and accurate networks. This technique is known as neural
network distillation [1], model compression [2], or knowl-
edge transfer [3]. Most of the proposed knowledge transfer
techniques work as follows. A large neural network is used
to generate soft-targets for each training sample. Then, these
targets are used to train the lightweight model [1]. The sim-
ilarities between the training samples are implicitly encoded
in these soft-labels, providing more information regarding the
training data than the plain binary labels. Also, using soft-
labels instead of the ground truth labels regularizes the training
process increasing the classification accuracy. In this paper,
the larger model is also called donor model, while the smaller
model is called receiver model.

Since most neural network knowledge transfer approaches
follow the basic distillation idea, i.e., the donor is used to
produce soft-labels using a transfer set of data and these
labels are then used to train the receiver model, they are
unable to transfer the knowledge between networks when the
dimensionality of the layers used for the transfer is different.
This limitation arises from the inability to provide meaningful
similarity measures between vectors that have different dimen-
sionality. Furthermore, this implies that it is not possible to
directly use distillation to transfer the knowledge if the donor
network predicts a larger number of classes than the receiver.

Several questions arise from the aforementioned observa-
tions. For example, is there a way to extract the knowledge

that is encoded in a neural layer without merely regressing
its output? Is it possible to transfer the knowledge between
two layers of neural networks that differ in architecture? Note
that existing knowledge transfer approaches usually employ a
supervised term in the loss function in order to train useful
networks [1]. Can we perform pure unsupervised knowl-
edge transfer without using the knowledge transfer procedure
merely as a regularizer?

The main contribution of this paper is the proposal of a
method that is capable of transferring the knowledge between
any two layers of two neural networks by matching the sim-
ilarity between the training samples, effectively overcoming
the limitations of the other knowledge transfer techniques.
The geometry of the donor’s feature space is sampled and
then the receiver model is trained to mimic this geometry
using similarity-induced embeddings [4]. To this end, the
donor model is used to calculate the similarity matrix of the
training set. The knowledge is transfered to the receiver by
mimicking the similarities induced by the donor model, i.e.,
recreating the same geometry in a lower-dimensional space. It
worths observing that the distillation approach [1], also tries
to implicitly exploit such kind of similarity information by
raising the softmax temperature and, thus, generating more
fuzzy class assignments. Furthermore, note that the proposed
method does not directly use the weights of the network or
employ dimensionality reduction techniques to match the rep-
resentation extracted from various parts of the network, as in
[3], or [5]. Instead, it is the first model-agnostic method, that it
is capable of directly performing knowledge transfer between
any two layers of two networks, regardless the employed
neural network architectures. Three image datasets are used
to demonstrate the effectiveness of the proposed method. The
performance of the proposed method is also evaluated for the
problem of facial pose estimation using a light-weight model
that can be deployed on embedded devices, such as drones
that will assist the video shooting of sport events [6].

The rest of the paper is structured as follows. The related
work is presented and compared to the proposed approach
in Section II. Next, in Section III, the proposed method
is presented in detail. Finally, in Section IV the proposed
approach is thoroughly evaluated, while conclusions are drawn
and possible future work is discussed in Section V.
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Fig. 1: Training the receiver model using similarity embeddings allows for transferring the knowledge from the donor model
to the receiver model by “mimicking” the geometry of the donor model.

II. RELATED WORK

Deep neural networks are becoming increasingly complex-
ing fueling the research on transferring the knowledge of a
large donor model into a smaller and faster one that can
be deployed on embedded or mobile devices with limited
computational power. Most of the proposed knowledge transfer
methods use soft-labels, that are generated by the donor model,
to train the receiver model [1], [2], [7], [8], [9]. Model
compression [2], was among the first methods that used such
kind of labels to perform knowledge transfer. This approach
was extended in [1], by appropriately selecting the temperature
of the softmax function before generating the soft-labels. The
distillation approach also regularizes the training process pro-
viding better generalization than training the network directly
using binary labels. In [9], the distillation process is used for
domain adaptation using sparsely labeled data, while in [10]
soft-targets are employed for pretraining a larger network.

The previous methods perform knowledge transfer by train-
ing the receiver model to mimic the soft-labels that were gen-
erated using the donor. A more direct approach is used in [3],
where the weights of the donor model are used to initialize the
receiver model increasing the convergence speed. The receiver
model is then trained using the regular training dataset. A
different approach is used in [5], where the distillation process
is enriched using hints from the intermediate layers. Since
the dimensionality of the intermediate layers is not always
the same between different network, random projections are
employed in [5], to match the dimensionality between the
layers used for providing the hints.

To the best of our knowledge we propose the first method
for knowledge transfer that works by matching the similarities
induced by the donor and the receiver networks and thus being
able to transfer the knowledge between any two layers, regard-
less the architecture of the corresponding networks. In contrast
to the other approaches proposed in the literature, the proposed
method does not use the weights of the donor network, as

in [3], or employ random low dimension projections, as in
[5]. Instead, the geometry of the feature space of the donor
model is modeled using similarity embeddings, allowing for
performing direct knowledge transfer from the donor model
to the receiver model. Note that similarity embeddings are
usually used to develop dimensionality reduction techniques,
e.g., [4]. Nonetheless, as we demonstrate in this paper, they
can be successfully used to transfer the knowledge between
different neural networks.

III. PROPOSED METHOD

Let D denote the donor network from which the knowledge
will be transfered to the receiver network R. To simplify
the presentation of the proposed method, we assume that the
networks receive a vector input. However, this is without loss
of generality, since the method can readily work with any kind
of input, e.g., tensors. The notations D(x,7) and R(x,%) are
used to denote the output of the i-th layer of each network
respectively, where x € R” is an input vector (or tensor)
and L is the input dimensionality. Note that we impose no
constraint on the architecture of the models. For example, a
10 x 500 x 50 x 20 MLP can be used as the donor model, while
a 10 x 20 x 5 MLP can be used as the receiver model. The
transfer set, which is employed to perform knowledge transfer,
is denoted by Xirqin = {X1,X2,...,xx} and might contain
any kind of data, e.g., the original training set, unlabeled data
from a relevant domain or even synthetic data.

The proposed method aims to recreate the geometry induced
by the the m-th layer of the donor network using the [-th
layer of the receiver model. To achieve this, the geometry of
the donor network is modeled using similarity embeddings
and then the receiver model is trained to mimic these em-
beddings. The output of the donor’s m-th layer is denoted by
t; = D(x;,m) € RIm, while the output of the receiver’s
I-th layer is denoted by y; = R(x;,1) € REi. Note that
the dimensionality of layers might different, i.e., L,, # L],



allowing for transferring the knowledge between any two
layers of the networks.

Let [T];; denote the similarity between the i-th and the j-
th point of the transfer set, as expressed by the representation
extracted from the donor model. Any similarity metric can
be used to estimate this similarity, e.g., using the cosine
similarity:

t7't;
[T];j = —+2—. (1)
R A
or a Gaussian kernel:
t; —t;
[T} = exp(—w). ()

To simplify the implementation and avoid the need for care-
fully estimating the scaling factor (o) of the Gaussian kernel,
a simpler linear kernel is used in this work:

[T]s; = [t] t51. 3)

The absolute value operator is employed to ensure that Eq. (3)
is a proper similarity metric. Note that it has been recently
demonstrated that replacing the Gaussian kernel with a simpler
linear kernel can improve the speed of the methods without
harming their accuracy. For example, soft formulations of the
Bag-of-Features model, e.g., [11], usually employ a Gaussian
kernel to calculate the similarity between the feature vectors
and the codebook. However, replacing this kernel with a
similar linear kernel does not significantly affect the quality
of the learned representation [6]. The output of the donor
network is normalized to the range 0...1 using min-max
scaling. Similarly, the similarity between the representations
y: and y; extracted using the receiver model is defined as:

[Pl = ly] y;l- )

To train the receiver model to recreate the geometry of the
donor the similarity matrices defined in Eq. (3) and in Eq. (4)
must closely approximate each other. To this end, the receiver
model is trained to minimize the mean squared error between
the donor’s similarity and the predicted similarity:
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In this way, it possible to recreate the geometry of the donor
model using the receiver model, as shown in Figure 1. This
method allows for efficiently performing knowledge transfer,
since the similarity between different samples expresses more
information than a single binary label. However, the training
process might rotate and distort the donor’s feature space.
Therefore, when the proposed method is employed to transfer
the knowledge between the classification layers, a lightweight
classifier, such as the nearest centroid classifier, must be used
to recover the original class mapping.

The gradient descent method can be used to minimize the
used loss function defined in Eq. (5):
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where the notation W is used to denote the parameters of
the receiver model. In this work, the Adam algorithm [12], is
used instead of the simple gradient descent since it provides
faster and more stable convergence. Note that using the whole
transfer set to calculate the loss function is computationally
infeasible for large datasets, since a quadratic number of
similarities must be calculated. Instead of using the whole
training set for each optimization step, the optimization is
performed by sampling a small number of transfer samples
(batches) and calculating the corresponding similarity matrix.
The data must be appropriately shuffled before each training
epoch to ensure that different pairs of data points are employed
for training the model in each epoch.

The proposed knowledge transfer algorithm is summarized
in Figure 2. First, the receiver model is initialized (line 2) and
the min-max scaler is initialized (line 3). Then, the transfer set
is shuffled before each epoch (line 5), the output of the donor
model is calculated (line 7) and the Adam algorithm is used
to optimize the model according to the proposed loss function

(Eq. (5)).

Input: The transfer set Xqin = {X1,...,xn} and the donor
model D
Hyper-parameters: N;;..s (number of iterations), n (learning
rate), Npqeen, (batch size) and the layers, m and [, used to
transfer the knowledge (m-th layer of the donor model and
l-th layer of the student model)
Output: The receiver model R

1: procedure KNOWLEDGE TRANSFER

2: Initialize the receiver model R

3: Calculate the minimum and the maximum values of

the m-th layer of the donor model using the transfer

et
for i < 1:7 < Nijops: i+ + do

4:

5: Shuffle the transfer set X;,qin

6: for Xpoten € Xirain do

7: Feed-forward the donor model and scale the
representations t; extracted from its m-th
layer

8: Apply the Adam algorithm, using learning

rate 7, to update the parameters of the
receiver model R in order to optimize
Eq. (9).
return the model R
Fig. 2: Algorithm for knowledge transfer using similarity
embeddings

IV. EXPERIMENTS

In this Section the proposed method is evaluated using three
image datasets. First, the datasets used for the evaluation are
introduced and the experimental setup is briefly described.
Then, the experimental evaluation of the proposed method is
presented in detail.



A. Datasets and Evaluation Setup

Three image datasets are used to evaluate the proposed
method, the MNIST database of handwritten digits [13], the
CIFAR10 [14], and the Annotated Facial Landmarks in the
Wild (AFLW) dataset [15]. The MNIST database [13], is a
well-known dataset that contains 60,000 training and 10,000
testing images of handwritten digits. There are 10 different
classes, one for each digit (0 to 9), and the size of each
image is 28 x 28. The CIFAR10 dataset [14], contains 60,000
32 x 32 color images that belong to 10 different categories:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and
truck. The dataset is already split into 50,000 train and 10,000
test images. The CIFAR10 dataset is a labeled subset of the
80 million tiny images dataset [16]. The Annotated Facial
Landmarks in the Wild (AFLW) dataset [15], is a large-scale
dataset for facial landmark localization. The AFLW dataset is
used to evaluate the performance of the proposed knowledge
transfer method for the problem of facial pose estimation
using a light-weight model that can be deployed on embedded
devices, such as drones that will assist the video shooting of
sport events [6]. Estimating the facial pose of the actors allows
for calculating the appropriate shooting angle according to
the specifications of each shot. The pose estimation problem
is expressed as a classification problem with three classes
depending on the horizontal facial pose (yaw): left (yaw less
that -10 degrees), center (yaw between -10 and 10 degrees)
and right (yaw greater than 10 degrees). The 75% of dataset
was employed for training the model and the rest 25% for
evaluating the models. The supplied face annotations were
used to localize and crop each face image. Each face image
was then resized to 32 x 32 pixels, while images smaller than
16 x 16 pixels were discarded.

Note that it is not possible to directly evaluate the quality
of the model after the knowledge transfer, since the embed-
ded feature space may have been transformed, e.g., rotated.
Therefore, two different approaches are used to evaluate the
quality of the conducted transfer: a) a lightweight nearest
centroid classifier was trained using only few training samples
(3 samples per class) and b) the distillation method [1], was
employed for finetuning the network towards classification.
In the latter case, the output of the network can be directly
used for predicting the class of a sample. Note that both
proposed method and the distillation method are used in a
purely unsupervised setting without using any labels during
the training procedure.

B. MNIST Evaluation

First, we evaluate the proposed method using the well-
known MNIST dataset. The following architecture was used
for the donor model: two pairs of convolutional layers (64
filters of size 5 x 5) and 2 X 2 max pooling layers followed by
two fully connected layers (512 x 10). For the receiver model
a similar architecture is used, but with less filters leading
to a network with over 30 times less parameters than the
donor model (20k vs. 634k parameters). The receiver model is
significantly simpler, using only 8 filters for the convolutional

[ Network  # params Data Class. Error |
A 634Kk MNIST (F) 0.64%
B 20k MNIST (F) 1.17%
B 20k MNIST (30) 28.33%

TABLE I: MNIST: Donor model and receiver model baselines

layers, while the size of the hidden layer is reduced to 128
neurons. For both networks rectifier activation functions are
used. For training the baseline models dropout is also utilized
for regularizing the training process. Training the donor model
with the full training split of the MNIST dataset (denoted by
“MNIST (F)”) leads to a test error of 0.64%, while the receiver
model achieves a test error of 1.17%. When the receiver
network is trained using only 3 randomly sampled images per
class, it achieves a classification test error of 28.33%. This
dataset is denoted by “MNIST (30)”. Note that the same setup
was also used for training the nearest centroid classifier. When
the full training dataset is used, then we train the models for
20 epochs, while when only 30 samples are used, then we use
more epochs (20,000) to compensate for the smaller number of
samples. The classification error for these baseline models and
the number of parameters required for the donor (network A)
and the receiver (network B) are summarized in Table I.

The results are reported in Table II. The knowledge was
transfered between the last convolutional layers of the net-
works and the optimization process ran for 50 epochs. We
report two different classification error rates: the nearest cen-
troid classifier error using the features extracted from the layer
used for knowledge transfer (“NCC”) and the classification
error of the network when the output layer is directly used for
classification (“NN”). The proposed approach is abbreviated as
“KT” (Knowledge Transfer). Only the NCC error is reported
for the KT method, since it was used to transfer the knowledge
between the convolutional layers. We also compare the pro-
posed method to the distillation approach [1] (left column of
Table II). For the distillation approach, the final classification
layer is used after raising the softmax temperature to 7" = 10.
Again, the optimization for the distillation approach ran for 50
epochs. After transferring the knowledge using the proposed
KT method, the network can be further finetuned using the
distillation approach (both the NNC and the NN classification
error rates are reported in this case).

For evaluating the knowledge transfer we used two different
transfer sets. The first one uses a limited set of 30 training
samples (abbreviated as “(30)”), while the second one uses the
full training dataset (abbreviated as “(F)”). As it was expected,
using only 30 samples for the knowledge transfer procedure
leads to relatively large classification error. However, augment-
ing that data by adding Gaussian noise reduces the classifi-
cation error by more than 6%. In both cases the proposed
KT method significantly improves the learned representation
over the distillation approach, e.g., the classification error for
the NCC approach is reduced by more than 10% over the
competitive methods. When the network is further finetuned



Transfer Set Distillation Knowledge Transfer | Knowledge Transfer +  Distillation
NCC NN NCC NCC NN
MNIST (30) 37.87%  27.10% 27.29% 27.21% 26.77%
MNIST (30) + N(0, 0.25) | 32.63% 25.48% 28.06% 27.57% 20.23%
MNIST (F) 17.83%  0.91% 12.29% 10.82% 0.80%

TABLE II: MNIST Evaluation: Knowledge transfer using different transfer sets (classification error rate)

[ Network  # params Data Class. Error |
A 1,251k CIFAR10 (F) 20.02%
B 422k CIFARI10 (F) 28.31%
B 422k CIFARI10 (30) 82.48%

TABLE III: CIFAR10: Donor model and receiver model
baselines

with the distillation process, the NN classification error drops
over 5% (MNIST (30) + N0, 0.25)), while when the full
training dataset is used the proposed method reduces the NCC
classification error by 7%, while reaching a spectacular 0.80%
NN classification error. Note that the networks trained using
the proposed method perform better than the baseline networks
that were directly trained with the labeled dataset (Table I),
indicating the practical value of the proposed method.

C. CIFARIO Evaluation

Next, the CIFAR10 dataset is employed for evaluating
proposed method. The following architecture is used for the
donor model (network A): two convolutional layers with 32
filters of size 3 x 3, followed by one 2 X 2 max pooling layer, 2
convolutional layers with 64 filters of size 3 x 3 and a second
2 x 2 max pooling layer. Then, two fully connected layers
(512 x 10) are used. The output of the convolutional layers
is normalized using local response normalization [17], while
dropout [18] is employed during the training process to ensure
that the networks do not overfit the data. A simpler architecture
is used for the receiver model (network B): two convolutional
layer are used instead of four (the convolutional layers directly
before the pooling layers are removed) and the size of the
fully connected layer is reduced to 128 x 10. The donor and
the receiver classification error (using both the full dataset
“(F)” and a subsample of only 30 training samples “(30)”) are
reported in Table III. When the full training dataset is used the
models are trained for 20 epochs, while when only 30 samples
are used the optimization runs for more epochs (20,000) to
compensate for the smaller number of samples. Note the
classification accuracy of the receiver model is significantly
reduced when trained using only 30 training samples.

As in the MNIST evaluation, the proposed KT method
is first evaluated using only 30 training samples for the
knowledge transfer, while the knowledge is transfered between
the last convolutional layers of the networks. In this case,
the proposed method achieves significantly better classification
error than the baseline model, i.e., 75.57% vs. 82.48%. This
improvement is mainly due to the use of the proposed KT
transfer method, since using the distillation method alone

achieves 80.28% classification error. Adding noise to the data
further improves the classification error to 74.59%, while
when the whole dataset is used for the knowledge trans-
fer the classification error drops to 27.50% (combined with
distillation-based finetuning), which outperforms the baseline
model trained on the same data (28.31%). As before, the pro-
posed knowledge transfer method improves the classification
accuracy over directly training the models and outperforms the
distillation approach.

D. AFLW Evaluation

Finally, the proposed method was also evaluated on the the
AFLW dataset. The following architecture was used for the
donor network: 2 convolutional layers with 16 3 x 3 filters,
followed by a 2 x 2 max pooling layer, another 2 convolutional
layers with 32 3 x 3 filters, a 2 x 2 max pooling layer and
128 x 3 fully connected layers. On the other hand, the receiver
model consists of one 3 x 3 convolutional layer with 8 filters,
a 3 x 3 max pooling layer, another one 3 x 3 convolutional
layer with 16 filters, followed by a 3 x 3 max pooling layer
and 16 x 3 fully connected layers. As before, local contrast
normalization and rectifier activation functions are used. Note
that the receiver model is significantly smaller than the donor
model using almost two orders of magnitude less parameters,
allowing the receiver model to be directly deployed on em-
bedded devices with limited processing power. The networks
were trained for 50,000 iterations using batches of 32 samples.
The donor model achieved 87.19% pose estimation accuracy,
while training the receiver model using the same setup leads
to 82.83% accuracy.

Table V summarizes the experimental results using the
ALFW dataset. For both the distillation and the KT methods
50,000 training iterations were used using a batch size of 32.
In this setup, the knowledge is directly transfered between
the first fully connected layers of the networks. The proposed
“KT + Distillation” approach improves the accuracy over 2.5%
when the NCC classifier is used. Again, the proposed knowl-
edge transfer procedure improves the results over both the
baseline networks and the distillation approach highlighting
the effectiveness of the proposed knowledge transfer method.

V. CONCLUSIONS

In this paper, a method that is capable of transferring the
knowledge between any two layers of neural networks was
proposed. The proposed method is model-agnostic overcoming
several limitations of existing knowledge transfer techniques,
since the knowledge is transfered between layers that can
have different architecture and no information about the donor



Transfer Set Distillation Knowledge Transfer | Knowledge Transfer +  Distillation
NCC NN NCC NCC NN
CIFAR-10 (30) 84.17%  80.28% 78.32% 77.56% 75.57%
CIFAR-10 (30) + NV(0, 0.01) | 83.10%  79.55% 78.48% 78.35% 74.59 %
CIFAR-10 (F) 74.64%  31.38% 69.59% 71.96% 27.50%

TABLE IV: CIFAR Evaluation: Knowledge transfer using different transfer sets (classification error rate)

Method Accuracy (NCC) Accuracy (NN)
Distillation 78.21% 81.76%

KT 77.99% -

KT + Distill. 80.81% 83.11%

TABLE V: AFLW Evaluation: Knowledge transfer evaluation
using different methods

model is required, except for the representation extracted from
the corresponding layer. This allows the proposed method
to overcome the limitations of other existing methods, e.g.,
requiring access to the weights of the donor model or keeping
the same dimensionality between the layers used for knowl-
edge transfer. The effectiveness of the proposed approach was
demonstrated using three image datasets, including a large-
scale dataset for learning a light-weight model for facial pose
estimation that can be directly deployed on devices with
limited computational resources, such as embedded systems
for drones.

There are several interesting future research directions. First,
the proposed method is also capable of providing hints for
different layers of the donor network, as in [5], without the
added complexity (and possible information loss) of dimen-
sionality reduction. Also, augmenting the transfer set with
noise seems to significantly improve the performance of the
method. Therefore augmenting the transfer set with data from
a similar domain and/or using synthetic data (e.g., learning
the dataset that is optimal for knowledge transfer, similarly to
[19]) is expected to further improve the knowledge transfer.
Furthermore, transferring the knowledge from various layers
of a large convolutional network to a smaller network might
allow for learning very fast feature extractors that could be
used for extracting representations than can be then fine-tuned
for information retrieval [20] or clustering tasks [21]. Finally,
the proposed methodology could be also applied to transfer
the knowledge from a model of a biological system, where
the training data are usually unknown, to a neural network
just by using random noise or cross-domain data.
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