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Abstract—Unmanned Aerial Vehicles (UAVs), also known as
drones, are increasingly used for a wide variety of novel tasks,
including drone-based cinematography. However, flying drones
in such setting requires the coordination of several people,
increasing the cost of using drones for aerial cinematography and
limiting the shooting flexibility by putting a significant cognitive
load on the director and drone/camera operators. To overcome
some of these limitation, this paper proposes a deep reinforcement
learning (RL) method for performing autonomous frontal view
shooting. To this end, a realistic simulation environment is
developed, which ensures that the learned agent can be directly
deployed on a drone. Then, a deep RL algorithm, tailored to the
needs of the specific application, is derived building upon the
well known deep Q-learning approach. The effectiveness of the
proposed technique is experimentally demonstrated using several
quantitative and qualitative experiments.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), also known as drones,
are increasingly used for a wide variety of novel tasks, ranging
from fire detection in forests [1], and wildlife protection [2], to
promptly responding to medical emergencies [3]. Drones are
also used for cinematography tasks due to their high versatility
and ability to capture spectacular aerial shots [4]. However,
flying a drone in such settings requires the coordination of sev-
eral people. A pilot has to control each drone, while a camera
operator has to control the shooting camera on each drone. At
the same time, the director has to coordinate several pilots and
camera operators, if multiple drones are used, and ensure the
quality of the captured shots. This situation increases the cost
of using drones for aerial cinematography and severely limits
the shooting flexibility by putting a significant cognitive load
on the director and drone/camera operators.

The aforementioned limitations led to the development of
various techniques for assisting drone-based cinematography,
ranging from techniques for automated planning for multi-
view drone shooting [4], and crowd avoidance for comply-
ing with drone legislation [5], to autonomous drone con-
trol systems [6], and various techniques for steering drone
video shooting [7], [8]. These techniques automate various
parts of the shooting process, reducing the cost of aerial
cinematography and the cognitive load of human operators.
However, we are still far from developing fully autonomous
drones that would be able to automatically shot professional-
grade footage according to a predefined plan, as designed
by the director, while detecting salient events for performing

opportunist shooting. This paper focuses on automating the
drone control process for performing autonomous frontal view
shots. That is, we aim to appropriately control the height and
the relative position of the drone with respect to the person of
interest to acquire a clear frontal shot.

Several approaches can be used to achieve this goal. Perhaps
the most widely used is to project a set of known 2D landmark
points, e.g., nose, eyes, mouth, etc., into the 3D space and
solve the corresponding Perspective-n-Point (PnP) problem to
estimate the pose of the head of the person of interest [9],
[10]. Then, a PID controller can be used to appropriately
control the drone to acquire the desired frontal shot [11],
[12]. However, this approach requires accurately detecting
several 2D facial landmark points, which can be especially
difficult if a low-resolution image input is used. Note that
this is usually the case, since drones frequently use a low-
resolution video feed for performing the on-board processing
tasks, even when high resolution cameras are available, due to
their limited processing power and memory. Apart from these,
careful calibration of the system is required and it is non-trivial
to extend this approach for estimating the pose of other objects,
since the landmark points have to be appropriately redefined
and a corresponding detector must be developed.

Some of the aforementioned drawbacks can be addressed
by using deep pose estimation algorithms that are directly
trained to estimate the pose of various objects using a
training set of data that contains images along with their
pose annotations [13], [14]. Even though such deep learning
approaches have been shown to increase the pose estimation
accuracy and lead to more robust pose estimators, there is
no guarantee that they will be optimal for performing control
tasks. Developing optimal control algorithm has a long history
in various engineering fields [15], [16]. Quite recently, it was
shown that combining the great learning capacity of deep
learning models with reinforcement learning (RL) techniques
can lead to the development of robust control policies, that
can work under stochastic and noisy environments, producing
spectacular results, that often outperform humans on sophisti-
cated control tasks [17], [18], [19]. However, RL techniques
require realistic simulations of the environment where the RL
agent will operate, which may not be always available.

The main contribution of this paper is the proposal of
a deep RL method for accurately controlling a drone for
performing frontal view shooting. To this end, we use the Head



Pose Image Database [20], to develop a realistic simulation
environment that ensures that the learned agent can be directly
deployed on a drone. Furthermore, we develop a deep RL
algorithm tailored to the needs of the specific application,
building upon the well known deep Q-learning approach [17],
and we experimentally demonstrate the effectiveness of the
proposed technique. We compare the proposed method to
a controller that directly uses the output of a deep model
that performs pose estimation and we demonstrate the su-
perior behavior of the proposed RL method. Note that there
are several recent deep RL approaches for various robotics
applications [21], [22], [23]. However, to the best of our
knowledge, this is the first work where deep RL is used
to perform accurate drone control for frontal view shooting
using a dedicated simulation environment. To further boost RL
research, that critically relies on the availability of simulation
environments, we provide an open-source implementation of
the developed simulator as well as of the developed techniques
at https://github.com/passalis/drone_frontal_rl.

The rest of the paper is structured as follows. The proposed
method is described in detail in Section II. Then, the exper-
imental evaluation is provided in Section III. Finally, future
work is discussed and conclusions are drawn in Section IV.

II. PROPOSED METHOD

First, we provide a brief introduction to RL and the used
notation. Then, the developed simulation environment for
performing drone control for frontal shooting is presented. Fi-
nally, the proposed Deep RL method is derived and discussed
in detail.

A. Deep Reinforcement Learning

Given an environment for which the Markov property is
satisfied, i.e., the future state depends only on the current state
and the selected action (or equivalently, given the current state
and action the next state is conditionally independent of the
previous states and actions), RL can be modeled using Markov
Decision Processes (MDPs). A MDP can be defined as a tuple
(S, A, P(-),R(:),7), where:

1) &S is the set of possible states for the environment,

2) A = {a1,a9,...,an,} is the set of possible actions,

where N, is the number of possible actions,

3) P(sty1lst,at) is the probability that the environment
will transit from the state s; to the state s, given that
the action a; has been performed,

4) R(st,at,s¢41) = 71 is the immediate reward that
the agent receives when performing the action a; and
transitioning from state s, to state s;41,

5) ~y is a discount factor that defines the importance of im-
mediate rewards versus future rewards, where typically
0 <~ < 1. For v = 0 the agent is short-sighted, while
higher values increase the importance of future rewards.

An agent starts at state sg and selects the next action
according to a policy 7(s) that defines the action that the
agent will perform. Note that the policy 7(-) can be stochas-
tic and it is usually described as a probability distribution

over the available actions, i.e., 7 S — P(A). The
agent’s behavior defines a sequence of state-action-rewards
80, 00,70, S1, 01,71, S2, A2, T2, ..., ST that describes the history
of the agent for a given episode that ends after 1" steps. The
discounted accumulated return for an episode consisting of T’
steps is defined as:

R=) +""r, )

where each action is selected according to the policy 7 (s). RL
aims to learn the optimal policy 7* that provides the maximum
expected return:

7 = argmax E[R|7]. (2)

Even though several approaches have been proposed for
tackling this problem [24], in this paper the Q-learning method
is used. In Q-learning the optimal action-value function
Q*(s,a) is used to express the expected reward of performing
the action a from the state s, given that an optimal policy
is then followed. More formally, the action-value function
Q*(s,a) is defined as:

Q*(s,a) = mar E[R¢|s; = s,a: = a, 7],

where R; is the future discounted reward at time ¢ defined as:

T
Ry= 7"t 3)

t'=t

In other words, the action-value function Q*(s,a) measures
the maximum reward that an agent can earn after performing
the action @ and then using an optimal policy for the next
transitions.

Bellman equation can be used to derive a method for
learning the optimal action-value function starting from an
initial guess Q1 (s, a) [24]. Then, the action-value function is
learned by observing the behavior of the environment, as the
agent selects various actions, as:

Qit1(st,ar) = (1—=m)Qi(st, ar) +n(re +ymaz,Qi(se+1, a)),

“)
where 7 is the used learning rate. This algorithm, that belong
to the family of value iteration algorithms [24], converges
to the optimal action-value function Q*(s,a) as i — oo.
Even though simple look-up tables can be used to represent
and store the optimal values (Q-values), this approach quickly
becomes impractical as the size of the state set S increases. To
overcome this limitation, a deep neural network can be used to
approximate the action-value function (deep Q-learning). The
neural network is updated after each time-step using stochastic
gradient descent [25], to minimize an appropriately defined
loss function £(-) that measures the error between the current
estimation Q(s,a, W;) and the target value provided by the
Bellman equation, where W; are the parameters of the deep
neural network after ¢ optimization iterations. The difference



o
>
=

o
o
o

~

b
o
o

ke
-

&
(e}
[¢]
)
g
a
Vo
o
-
w
[e=)
=,
=3

(f) F

24

o 18 18 8 e
£ 18 o 1 o b e
2 18 1o 1 o s e
el

P

P

(a) Face images at —60° tilt (pan varies from —90° to 90° in st

b) Face images at —30° tilt (pan varies from —90° to 90° in steps of 15°

(c) Face images at —15° tilt (pan varies from —90° to 90° in st

(d) Face images at 0° tilt (pan varies from —90° to 90° in steps of 15°)

-
=
-
-
e
o
o

(e) Face images at 15° tilt (pan varies from —90° to 90° in steps of 15°)

-
-
-
o s o o

o J6 Jo o e o

(pan varies from —90° to 90° in steps of 15°)

-
e
=
<
J
J
Je

b

P
5. ps

a
o
@
Q
=
—_
(9]
o

.

(g) Face images at 60° tilt (pan varies from —90° to 90° in steps of 15°)

Fig. 1: Simulation environment: The drone moves in a sphere (approximately) centered at the face of the subject. The control
commands (left/right/up/down) are simulated using the appropriate images from HPID.

between the current estimation and the value provided by the
Bellman equation is defined as:

d = Q(st,at, W;) — (1t + ymazoQ(se41,a, Wi—1))), (5)

and can be minimized using any appropriate loss functions,
e.g., the squared loss £(§) = 362. The proposed deep RL
algorithm, that builds upon deep Q-learning [17], is analyti-
cally derived in Subsection II-C. The interested reader is also

referred to [26], [27], [24], for a more in-depth review of RL.

B. Proposed Drone Control Environment

The Head Pose Image Database [20], abbreviated as “HPID”
thereof, was used to develop the simulation environment.
HPID contains 2,790 face images of 15 subjects in various
poses taken in a constrained environment. More specifically,
for each person face images with various head tilts (vertical
angle) and pans (horizontal angle) were taken. For the tilt, head
photos at —90°, —60°, —30°, —15°,0°,15°,30°, 60°, and 90°
were taken, while for the pan images that depict the head at
—90°, —=75°, —60°, —45°, —30°, —15°,0°, 15°, 30°, 45°, 60°,
75° and 90° were used. The developed simulator uses these
images to simulate the movement of a drone in a part of a
sphere defined by the center of the head of the subject. That
allows for simulating the movement of a drone in 15° steps
for the pan and in 15°/30° steps for the tilt. The various
poses, obtained from different shooting angles for a person

of the HPID, are shown in Fig. 1. The full pan range exists
only for the images with tilt angles between —60° and 60°.
Therefore, we restrict the available tilt angles used in the
simulator to the aforementioned range.

The developed environment supports 5 different actions (as-
suming that the drone moves on the sphere defined previously):

1) stay: do not perform any action (to be used when a clear
frontal view has been obtained),

2) left: move the drone left by 15° — pan decreases by
15°,

3) right: move the drone right by 15° — pan increases by
15°,

4) up: move the drone upwards by 15°/30° (depending on
the available annotations) — tilt decreases by 15°/30°,
and

5) down: move the drone downwards by 15°/30° (depend-
ing on the available annotations) — tilt increases by
15°/30°.

During these movements, we assume that the camera is
appropriately controlled to keep the face centered, e.g., us-
ing a PID controller [12]. If an agent requests a control
command that exceeds the limits of the simulator, e.g., an
angle larger than 90°, then the simulator remains at its last
state. An OpenAl Gym-compatible [28], environment was
developed, and an open-source implementation is provided at



https://github.com/passalis/drone_frontal_rl.

C. Proposed Deep Reinforcement Learning Technique for
Drone Control

In this Section the complete pipeline of the proposed deep
RL technique for drone control is described. The RL agent
interacts with the developed environment and observes its
state, i.e., the acquired shot as shown in Fig. 1. To simplify
the learning process, we use a face detector to detect and
crop the face image [29]. For the conducted experiments, we
directly used the head annotations supplied by HPID. After
appropriately cropping the image, it is resized to 64 x 64 pixels.
Therefore, the RL agent at the ¢-th time step observes a tensor
x; € RO4X64X3 that corresponds to the cropped face image.

Defining a meaningful reward function is critical for the fast
and stable convergence of RL algorithms. Even though RL can
deal, to some extent, with sparse and time-delayed rewards,
we experimentally found out that rewarding (or punishing) the
agent after each action can significantly speed up the learning
process. To define the reward function we first have to define
the control error at the ¢-th step:

eu = 5 (/0 + (2,/90)%), ©

where z; is the current tilt (in degrees) and x,, is the current
pan (in degrees). To acquire non-frontal shots, this error must
be appropriately modified to express the error around the
desired tilt and pan angle. Then, the reward function is defined
as:
(raw) __ 0, if e; > etnres 7)
t C)1- et/€thres, Otherwise

where eyres 1s the threshold for rewarding the agent. If
ethres 18 set to 1, then the agent is rewarded at every time-
step. Even though the reward is proportional to the control
error e;, this can slow down the learning process. In the
conducted experiments we only reward the agent when it
acquires the correct frontal shot, i.e., e;5.cs Was set to 0.05. To
further boost the learning process, we provide an extra small
reward/punishment whenever the agent makes a correct/wrong
movement:

—015, if ey > e
romu) — L1 ife < ey (8)
0, otherwise

Using a slightly higher penalty for wrong actions ensures
the stability of the control process and discourages control
oscillations. Therefore, the final reward function is defined as

the sum between the raw reward rt(mw), which depends on
the control error e;, and the “bonus” reward rt(bonus), that
encourages correct and stable control actions:

= riraw) + Tt(bonus). (9)

To approximate the action-value function we used a deep
convolutional network. A fast and lightweight network archi-
tecture, that can run on-drone and it is composed of less than

TABLE I: Neural network architecture

Layer Type Output Shape
Input 64 x 64 X 3
Convolutional (5 x 5, stride 2) 30 x 30 x 16
Batch Normalization 30 x 28 x 30
Max Pooling (2 x 2) 15 x 15 x 16
Convolutional (3 x 3) 13 x 13 x 32
Batch Normalization 13 x 13 x 32
Max Pooling (2 X 2) 6 X6 x 32
Convolutional (3 x 3) 4 x4 x 64
Batch Normalization 4 x4 x64
Max Pooling (2 X 2) 2X2x64
Dense 128
Dense 64
Dense 5

70,000 parameters, was used for this task. The architecture of
the proposed network is shown in Table I. Batch normalization
is used after each convolutional layer [30], while the relu
activation function is used for all the convolutional and dense
layers (except from the final one, which does not use any
activation function and predicts the Q-values for the 5 possible
actions) [31].

A significant problem in Q-learning is the instability of the
learning process when non-linear functions, such as neural
networks, are used to approximate the Q-values. Several
techniques have been proposed to overcome this issue [26],
[27]. In this work we use experience replay [32], that allows
for reducing the correlation between the training data and
improves the learning stability by using training instances from
various timesteps and episodes, to address this issue. The
size of the experience replay pool is set to Nyepiay = 500
and batches of Npgiern, = 32 samples are drawn before
each gradient descent update. Furthermore, we use a separate
target network for generating the Q-values during the training
to avoid feedback loops that can lead to instabilities. This
technique is known as “Double Q-learning” [33]. The target
network is updated every Nigrger = 500 steps.

For the optimization procedure the Huber loss function is

used:

E((S) — {%62’1 if § < fsthres (10)

|6|—50thres, oOtherwise

where 9§ is the difference error defined in Eq. (5). Huber
loss is used instead of squared loss, since it is more robust
to outliers, providing smoother gradients and stabilizing the
learning process (0ypres Was set to 1). This is especially
important when the reward can accumulate to relatively large
values, e.g., 50, as in the used environment. For updating the
weights of the network, the RMSProp optimizer with learning
rate 7 = 0.00005 was used [34]. Also, the discount factor ~
was set to 0.95. Finally, to explore the solution space a linear
exploration policy was used. Exploration starts with an initial
rate of €;n;; = 1 and linearly decreases it to €qrger = 0.1
during the first Negpiore = 900,000 training steps. After the
initial Negpiore sSteps the exploration rate stays constant to
€target = 0.1. During the testing/evaluation a small exploration



rate is also used, i.e., €5 = 0.05. The agent was trained for
1,000,000 steps that correspond to 20,000 control episodes.
For each episode a random initial position was used for the
drone. For training, head images from 10 persons of the HPID
were used, while for evaluating the proposed method images
from the rest 5 persons were used. The keras-rl library was
used to implement the proposed method [35].

III. EXPERIMENTAL EVALUATION

The evaluation results are reported in Table II. Two different
evaluation setups were used: a) “train”, where the 10 persons
that were used during the training process were used for the
evaluation, and b) “test”, where 5 different persons were used.
For evaluating the method we ran 500 random episodes, where
for each episode the agent was allowed to perform 20 control
actions. The proposed method is abbreviated as “D-RL” in
Table II. The learned agent was also compared to two other
strategies: a) using a dummy agent that does not perform
any control action (abbreviated as “Stay”) and b) using a
deep CNN to perform pose regression and then appropriately
control the drone (abbreviated as “Pose Regressor”). The Pose
Regressor network use the same architecture as the CNN
used for estimating the Q-values (Table I) and was trained
to directly regress the tilt and pan of a face image using the
same train/test setup, leading to a mean tilt error of 16.67°
and a mean pan error of 13.71° (evaluation on the test set).
The proposed RL method outperforms the Pose Regression
technique for both the train and test setups, demonstrating the
importance of learning optimal controllers for the task at hand
instead of relying on hand-crafted methods to perform control.

The reward and the mean Q-value during the training
process are shown in Fig. 2. During the exploration phase
(episodes 0-18,000) the mean reward increases and stabilizes
during the last 2,000 episodes, where the exploration rate is
fixed to 0.1. However, note there are a few episodes that
were not solved correctly during the last 50,000 training
steps. This issue can be probably solved by performing more
optimization iterations and/or using larger exploration during
the final steps to ensure that the agent will learn a more
effective control policy. The mean Q-value increases during the
training, as expected, and quite smoothly converges without
exploding. Furthermore, the performance of the agent during
various training checkpoints (every 100,000 training steps)
are shown in Table III. The best training performance is
obtained during the 800,000-th training step and this model
was chosen to perform the evaluations. The slight decrease in
the performance of the agent after the 800,000-th training step
can be possibly attributed to the decreased exploration rate.

Finally, several control sequences are shown in Fig. 3 (train
sequences) and Fig. 4 (test sequences). Several conclusions can
be drawn from these sequences. First, the proposed method
is able to accurately control the simulated drone to acquire
a frontal view shot both for the train and test evaluations.
Even though in most cases the agent is capable of recognizing
when the frontal shot has been obtained and emit the “stay”
command, the relatively high reward, that is given when the

absolutely correct pose has been achieved, can sometimes lead
to oscillations around the frontal position, e.g., row 4 of Fig. 3.
Such oscillations are even more frequent in the test evaluation.
This problem can be addressed by using a different reward
function that penalizes this kind of behavior.

IV. CONCLUSIONS

In this work we presented and evaluated a deep RL method
for performing drone control to acquire high-quality frontal
view person shots. The proposed method builds upon the well
established deep Q-learning approach [17], and was experi-
mentally demonstrated that it is capable of performing accurate
control. Furthermore, the proposed technique was able to
outperform a hand-crafted controller, that uses a dedicated
deep face pose estimator to control the drone, highlighting the
importance of learning optimal controllers instead of relying
on hand-crafted control techniques.

Several interesting future research direction exist. First, the
impressive performance of the proposed technique paves the
way for several other deep RL-based control methods for au-
tonomous drone-based cinematography. Furthermore, the pro-
posed method can be applied to more dynamic environments,
e.g., moving targets can be used, and more sophisticated deep
architectures, e.g., advanced pooling layers [36], or recurrent
networks [37], can be employed to more accurately model the
target and control the camera. Furthermore, the use of end-
to-end trainable systems, that simultaneously perform camera
and drone control, can be developed and evaluated. Finally,
the development of transfer learning techniques for RL, that
can combine the use of real datasets and simulators, that
use computer-generated graphics, will allow for training RL
techniques under a wider range of scenarios, while ensuring
that they can be directly deployed in real-world applications.
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