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ABSTRACT

Here, a novel approach is proposed to generate age progression (i.e.,
future looks) and regression (i.e., previous looks) of persons based
on their face images. The proposed method addresses face aging as
an unsupervised image-to-image translation problem where the goal
is to translate a face image belonging to an age class to an image of
a different age class. To address this problem, we resort to adver-
sarial training and extend the UNsupervised Image-to-image Trans-
lation (UNIT) framework to multi-domain image-to-image transla-
tion, since several age classes are considered. Due to the shared-
latent space constraint of UNIT, the faces belonging to each age
class/domain are forced to be mapped to a shared-latent representa-
tion. Low-level features are used to perform the transitions between
the domains and to generate age progressed/regressed images. In ad-
dition, the most personal and abstract features of faces are preserved.
The proposed Aging-UNIT framework is compared to state-of-the-
art techniques and the ground truth. Promising results are demon-
strated, which are attributed to the ability of the proposed method to
capture the subtle aging transitions.

Index Terms— face aging, adversarial training, latent space,
image-to-image-translation

1. INTRODUCTION

Aging is a long-term process that gradually affects human face. The
effects of aging on human face include changes in both hard and soft
facial tissues, such as the skeletal structure, skin, facial musculature,
and lines [1]. Aging patterns that are common among individuals are
the alteration of skin texture and the formation of lines and wrinkles
around eyes and/or mouth. Although face aging effects are distinct
across long periods of time, the short-term effects of aging are incon-
spicuous and therefore, difficult to model. Nevertheless, knowing
these aging patterns is necessary in order to predict how a person’s
face might look in the future (face progression) or how a person’s
face might have looked when he/she was younger (face regression or
rejuvenation). Predicting future and previous face looks is extremely
important for age-invariant face recognition. Moreover, it can signif-
icantly assist the search for missing or wanted persons. In order to
achieve realistic results, face age progression and regression need to
fulfil the crucial constraint of preserving the personalized features of
the face (i.e., personality). The great challenge is to estimate face
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aging effects, while maintaining the subject-specific characteristics
of each face.

Face aging has attracted great research interest over the years.
Face progression approaches can be divided in two main categories,
model-based and prototype-based. Model-based approaches model
the biological patterns of human aging, using parametric or non-
parametric learning. In [2], the face aging process is modeled with
a hierarchical graph whose nodes correspond to facial parts that are
crucial for age perception, such as eyes, mouth, and nose. In [3], a
face aging simulation model is presented. According to this model,
the face is represented by three layers, namely global, local, and tex-
ture layer, which are fused to simulate the facial aging process.

Prototype-based approaches divide training data to different
age classes and investigate how the faces images differ among age
classes. These differences actually represent the aging patterns,
which can be subsequently used to make transitions among classes
and generate age progressed or rejuvenated face images. In [4], the
aging patterns across different age groups form a dictionary for the
aging process. In [5], a deep learning-based approach for face aging
is presented that is based on a Recurrent Neural Network (RNN).
The age progressed face images are generated by referring to the
memory of the previous faces, making the age transitions across
different ages groups smoother.

The main limitation of the model-based approaches is that they
require images of the same person over a long age span in order
to effectively model the aging procedure. On the other hand, the
prototype-based approaches still need paired samples of face images
in order to capture the transitions across age classes.

The advent of Generative Adversarial Networks (GANs) [6] has
introduced an adversarial framework for training generative models
and had an astonishing effect on the quality of generated images. In
[7], a Conditional Adversarial AutoEncoder (CAAE) is proposed for
age progression and regression based on a face manifold. Travers-
ing on the manifold generates transitions across age classes, while
personality is preserved by mapping the faces to a latent space us-
ing convolutional encoders before projecting to the face manifold.
In [8], age conditional GANs are also utilized for age progression,
along with a latent vector optimization approach that aims to recon-
struct the input face and preserve the person’s identity. The approach
presented in [9] utilizes a pyramid of GANs for face aging that incor-
porates face verification and age estimation techniques. Other GAN-
based approaches for face aging are presented in [10, 11, 12, 13],
where effort has been devoted in the challenging task of identity
preservation.

In this paper, we investigate the age progression/regression prob-
lem from the perspective of generative modeling. Here, the face al-



terations related to aging are addressed as an image-to-image trans-
lation problem, i.e., as a problem of mapping an image belonging
to one domain to a corresponding image in another domain. Since
each age class is regarded as a single domain, the mappings across
domains constitute the transitions across age classes. In order to
learn the mappings/transitions across domains, we utilize the UNsu-
pervised Image-to-image Translation (UNIT) network proposed in
[14] and extend it to multiple domains. The proposed Aging-UNIT
framework is presented in detail in Section 2. In Section 3, the exper-
imental evaluation of the proposed framework is discussed. Finally,
Section 4 concludes the paper and recommends future work.

2. PROPOSED FRAMEWORK

Here, we present the pipeline of the proposed Aging-UNIT frame-
work for generating realistic face images belonging to different age
classes. The proposed Aging-UNIT emerged from the novel idea of
considering face aging as an image-to-image translation problem. To
implement image-to-image translations, we adopt the UNIT frame-
work presented in [14]. The UNIT framework [14], as well as its
predecessor, the Coupled GAN [15] extend GANs to joint image
distribution learning tasks.

When performing image-to-image translation, the goal is to
learn a joint distribution of images in different domains by using
images from the marginal distributions in individual domains. Since
there is an infinite set of joint distributions that can produce the given
marginal distributions, finding the joint distribution is not feasible
unless a key assumption is made. To this end, the UNIT framework
makes the shared-latent space assumption, according to which, a
pair of corresponding images in different domains can be mapped to
the same latent representation in a shared-latent space. Here, we pro-
pose the Aging-UNIT, which extends the UNIT framework to mul-
tiple domains and applies it to the face age progression/regression
problem.

Motivation: The UNIT framework employs GANSs [6, 15] and
Variational Autoencoders (VAEs) [16, 17] and is based on two vi-
tal assumptions: the shared-latent space assumption and the cycle-
consistency assumption. The key motivation of UNIT [14] is to
exploit the hierarchical way that deep neural networks learn fea-
ture representations. By enforcing a weight sharing constraint on
the layers that bear the most high-level semantic information, the
most abstract and personalized features are encoded/decoded in the
same way for each domain. Subsequently, in order to learn transi-
tions among domains, this shared representation across domains is
mapped to images in individual domains in an attempt to fool the
domain discriminators.

Sub-networks: According to our approach, each age class cor-
responds to a single domain. The Aging-UNIT framework consists
of three sub-networks for each domain: an encoder E, a generator
G and an adversarial discriminator D. If IV age classes are con-
sidered, the framework consists of N encoders E,,, N generators
G, and N adversarial discriminators D,,, n = 1,2,..., N. The
encoders E,, and generators G, are represented by Convolutional
Neural Networks (CNNs). The framework learns the bidirectional
translations among all N domains simultaneously.

VAE: For each domain X,, the encoder-generator pair {E,,
G} constitutes a VAE for the X,, domain, termed VAE,. The
V AFE,, firstly maps the input image z, € X, to a latent repre-
sentation z via the encoder E,,. Subsequently, the generator G,
of VAE, decodes a random-perturbed version of the latent code z
provided by the encoder E,,, in order to reconstruct the input image.

Shared-latent space assumption: The shared-latent space as-
sumption is necessary in order to estimate the joint distribution of
samples drawn from different domains in an unsupervised way. This
assumption is vital to the Aging-UNIT framework, since images
across age classes should share the same high-level representations
in order to maintain personalized features. This assumption is im-
plemented by a weight sharing constraint applied to both encoders
E,, and generators G,.

Since each domain encoder E,, is implemented by CNNs, the
network learns more complex and abstract features as the number
of layers increases. If the weights of the last few layers are shared
among E,, n = 1,2,... N, then each domain encoder learns to
encode domain images to the same high-level semantic informa-
tion. On the other hand, the generators G,, n = 1,2,..., N do
the inverse work of decoding the latent representations back to im-
ages. Therefore, since the latent representations capture the most
abstract high-level information for each image, it is the weights of
their first layers that should be tied. Due to adversarial training,
the encoders E,, learn to encode tuples of corresponding images
Tn,n = 1,2,... N to a common latent representation z, while
generators G, learn to decode the shared-latent representation z to
tuples of corresponding images.

In order to make image-to-image translations, the layers that de-
code low-level details map the shared-latent representation z to im-
ages in individual domains. For example, an image x1 € X thatis
encoded to z1 ~ ¢1(z1|x1) can be translated to domain X through
applying #1 72 = Ga(z1 ~ qi(21|z1)). Correspondingly, the im-
age x1 can be reconstructed by Z1 7! = G1(z1 ~ ¢1(z1]|z1)). f N
domains are considered, the transitions among all pairs of individual
domains X,, are implemented accordingly.

Cycle-consistency constraint: According to the Aging-UNIT
framework, each image xj, that belongs to domain X, is translated
to all other domains X;,l = 1,..., N, [ # k. The cycle-consistency
constraint hypothesizes the existence of a cycle-consistency map-
ping so that each of these translated images, if mapped back to
domain Xy, can reliably reconstruct input image xj. In other
words, the initial images x, € Xy are translated to domains
Xl = 1,...,N, I # k and yield the translated images =t

The translated images Zy ! are translated back to domain X,
~k—l—k ~k—sl—k

and yield images xj, . The twice translated images z;;

that were generated by the translation cycle between domains
Xr — Xz — X} should reconstruct initial images z; € Xy.
With this constraint imposed on the UNIT framework, the ill-posed
unsupervised image-to-image translation problem is further regular-
ized.

GANSs: A GAN [6] consists of two models that are trained si-
multaneously: a generative model G and a discriminative model D.
The generative model G tries to learn the distribution of the train-
ing image samples and synthesize images resembling the original
ones. The objective of the discriminative model D is to distinguish
the original images from the generated samples. G and D compete
with each other, using a min-max game

minmax By, () [log(D(z)] +E.p. (»)[log(1 =D(G(z))] (1)

where z denotes a vector randomly sampled from certain distribution
p-(z) (e.g., Gaussian or uniform), and the data distribution is px (),
i.e., the training data = ~ p,. The two models G and D are trained
alternatively. Goodfellow et al. [6] showed that if enough training
iterations are completed and enough capacity is given to G and D,
the distribution of the generative model pc(z) converges to the real
data distribution p(x). In other words, from a random vector z,



the generative network G can synthesize an image ¥ = G(z) that
resembles one that is drawn from the true distribution, p; ().

In the Aging-UNIT framework, each domain has each own gen-
erator G,, and discriminator D,,,n = 1,..., N. In each GAN,,,
generator G, tries to fool discriminator D,, by generating images
that reliably resemble the original images of age class X,,, while
discriminator D,, tries to understand which images actually belong
to age class X,,.

Objective function: The adversarial training of Eq. (1) can be
regarded as a two player zero-sum game, where the first player con-
sists of the team of encoders and generators and the second player
comprises the team of adversarial discriminators. In addition to de-
feating the second player, the first player has to minimize the VAE
loss and the cycle-consistency loss. The objective function aims at
jointly solving the learning problems of VAE and GAN subject to the
cycle-consistency constraint for each domain. The objective func-
tion for domain Xy, is given in Eq. (2) for translations from domain
X, to all other domains X;, [ =1,..., N, [ # k:

min max {EvAEk(Ek7Gk) + Laan, (Ei, Gg,Dy)

Ey E;,Gy,G; Dy, Dy
+ Lcco, (Ex, Gi, Ei, Gi), ()
kel,...,N,l=1,...,N, l;ék}

Lvag, in Eq. (2) corresponds to the objective function of

V AEj, training. V AFE), training for domain X, aims at minimizing
the loss function

Lvae, (Ex,Gr) = Xo KL (qx(zk|zr) || pp(2))
— A1 Eopiar Gl [longk (§k|zk)]
= Xo KL (qr(zk|zk) || pp(2))

+ A1 ok — 38 ey, k€L,... N

3

The Kullback-Leibler (KL) divergence penalizes any deviation of
the distribution g, of the latent code from the prior zero mean Gaus-
sian distribution p,(z) = N(z]0,I). Distributions pg, for n =
1,..., N are modeled using Laplacian distributions. Hence, mini-
mizing the negative log-likelihood term is equivalent to minimizing
the absolute distance between image . and the reconstructed image
Zr~k . Hyper-parameters Ao and A; control the weights of each term
of the Ly g, objective function.

Laan, in Eq. (2) penalizes the image translation stream from
domains X;, [ = 1,..., N, | # k to domain Xj. The objective
function of GAN training is conditional to age class and ensures that
the images translated to an age class X resemble the images that
truly belong to that age class. The conditional objective function of
GAN training for domain X, is given by

;CGAN,c (El, Gk,Dk) = )\2 Eszpzk [IOng(.’Ek)]
+ /\2 ]Ezlwa(zl\xl) [log (1 - Dk(Gk(Zl)))]a “
kel,...,N,l=1,....N, | #k

Hyper-parameter Ao controls the impact of generative loss for do-
main Xy. In our experiments, the same value of hyper-parameter A2
was set for all domains X,,,n=1,..., N.

Lcc, in Eq. (2) penalizes the cycle-consistency loss for domain
Xy For the translation cycle X, — X; - Xg,l=1,...,N, | #
k, the objective function for the cycle-consistency constraint is given
in Eq. (5). The KL divergence terms penalize any deviation of the
distribution g, of the latent codes of the translation stream X — X

and the distribution ¢; of the translation stream X; — Xj from
the prior distribution p,(z). The negative log-likelihood objective
term forces the twice translated image Z¥ ' ~* to resemble the input
image xx. Hyper-parameters A3 and A4 control the weights of the
two objective terms of the cycle-consistency constraint.

Lec, (Br, Gr, Ei,Gi) = A3 KL (qe(2k|zr) || po(2))
+ X3 KL (q(z1[7 ") || po(2))
W B may (a1 17 [log pa, (wk|21)],
kel,... N l=1,....N, 14k

(&)

Benefits: The benefits of the proposed Aging-UNIT framework
for age progression can be summarized in four major aspects. First,
the proposed novel approach reduces the burden of investigations for
the exact aging patterns across age classes. By performing age pro-
gression and regression via image-to-image translation, the Aging-
UNIT is capable of learning the effects of aging on human face in an
unsupervised manner. Secondly, personality is preserved across age
transitions due to the shared-latent space representation. The shared-
latent space is enforced by imposing a weight sharing constraint in
both the generative and the discriminative model and no further reg-
ularization has to be imposed to the GAN objective function to pre-
serve personality. Thirdly, the proposed framework does not require
paired samples in order to learn aging transitions. It can learn a
joint distribution of multi-domain images without existence of cor-
responding images in different domains in the training set. Only a set
of images drawn separately from the marginal distributions of the in-
dividual domains is required. Fourthly, the Aging-UNIT framework
learns transitions in both age directions and accomplishes realistic
results in both age progression and rejuvenation simultaneously.

3. EXPERIMENTS

3.1. Datasets

In order to train our framework, we first create our training set by
collecting a subset of images from the CACD [18] and the UTKFace
[7] datasets. Similar to [10], we define 7 age classes: 0-10, 11-18,
19-29, 30-39, 40-49, 50-59, and 60+ years old. The oldest person be-
longing to the last age class is 80 years old. Effort has been devoted
to create a balanced training dataset across age classes with respect
to gender. In total, the training dataset consists of 21,267 face im-
ages. In order to evaluate the proposed Aging-UNIT framework, the
FGNET dataset [19] is used for testing. The FGNET dataset consists
of 1002 images of 82 subjects aging from 0 to 69.

3.2. Experimental evaluation

To evaluate whether the proposed Aging-UNIT framework generates
photo-realistic face aging results, we test our method on the FGNET
dataset, similar to [7]. The effectiveness of the proposed method in
capturing the effects of aging on human faces is demonstrated in Fig-
ure 1, where seven input face images from the FGNET dataset and
the generated faces for the seven age classes are presented. The red
boxes indicate the generated images that belong to the ground truth
age class of each input face. Itis clear that as age progresses, the skin
texture alternates, while subtle changes to cheeks, eyes, and mouth
simulate face aging. Both progression and rejuvenation yield real-
istic results, while the aging effects preserve personalized features.
It should be noted that although no gender information is included,
the Aging-UNIT framework succeeds to capture abstract face aging
effects appropriate to the gender of the depicted person.



11-18 19-29 30-39 40-49 50-59

Fig. 1: Age progression and regression results admitted by the
Aging-UNIT framework for images of the FGNET dataset. The first
column depicts input faces, and the rest columns depict the admitted
results from both age progression and regression. The red boxes in-
dicate the generated images that belong to the ground truth age class
of each input image.

Comparison to ground truth: In Figure 2, we compare the face
images generated by the proposed Aging-UNIT framework to the
ground truth images of the FGNET dataset. More specifically, we
present generated samples of FGNET images translated to different
age classes and compare them to the ground truth images of the per-
sons at that specific age interval. The proposed framework demon-
strates appealing and realistic results for both age progression and
rejuvenation tasks.

Comparison to prior works: The performance of the proposed
face aging framework in producing realistic faces at different age
intervals is also compared to prior works. Our method is compared
to [5, 7, 10, 12] for age progression. In order to compare our re-
sults to the face aging images generated by the aforementioned ap-
proaches, we use the same input images and perform age progres-
sion. The comparative demonstration is presented in Figure 3. The
proposed Aging-UNIT demonstrates smooth age transitions and ad-
mits more realistic results when compared to generated images ad-
mitted by other methods, e.g., for input image in the first row of Fig-
ure 3 the image generated by the Aging-UNIT framework is more
realistic when compared to the generated image by method [12].
Aging-UNIT succeeds remarkably in maintaining personality, since
the unique characteristics of each face that make the person recog-
nizable remain unaltered by aging effects, especially when compared
to the generated images of the method in [5] (fourth column of Fig-
ure 3).

4. CONCLUSION AND FUTURE WORK

In this paper, face aging is addressed as an unsupervised image-to-
image translation problem. To our knowledge, this is the first time
that aging is considered as a problem of translation between images.
Our goal is to achieve age progression or regression while trans-

Ground truth

Fig. 2: Comparison to the ground truth images of the FGNET
dataset.

Input [10] [2

PP

45 60+ 71-80 60-80

5 60+ 71-80

Fig. 3: Comparison of age transitions admitted by the Aging-UNIT
framework and prior works evaluated on images of the FGNET
dataset.

lating an image to another that represents an older/younger person.
The most important condition when translating among images is to
maintain personality and preserve personalized features of face. To
achieve this, we adopt the UNIT image-to-image translation frame-
work [14] that is based on a shared-latent space constraint among
translation domains. This constraint forces the images to share en-
coded representations and via adversarial training leads to the gen-
eration of corresponding images in multiple domains. Experimental
results demonstrate the effectiveness of the proposed Aging-UNIT
framework to translate face images to different age classes while
producing realistic results and preserving personality. Future work
will focus on further regularizing the generative training in order to
reduce blurriness and improve the quality of the generated images.
Moreover, we aim to investigate how translations between distant
age classes could be facilitated, since they perform the most drastic
aging effects.
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