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Abstract—Stock prices evolve dynamically through time. Cap-
turing their changes is crucial in order to make accurate
predictions. In addition, it is well-known that the probability
density function of stock prices exhibits heavy tails and there is
a large degree of uncertainty in stock price evolution. Building
on the aforementioned facts, a robust collaborative Kalman filter
is proposed for stock price prediction within the context of time-
evolving dyadic processes, where the prediction error is treated
as a heavy-tailed noise whose variance is a properly modeled
random variable. Variational approximation is exploited to make
posterior inference tractable. The proposed model captures the
volatility of stock prices through time, yielding more accurate
predictions than the state-of-the-art and enabling the consistent
tracking of the extreme values of stock prices.

I. INTRODUCTION

Collaborative filtering is a special case of dyadic predic-
tion. It is the process of filtering information by utilizing
the assessments of other individuals. It is widely applied
to recommender systems, where the goal is to anticipate
estimations of user preferences and suggest items as close as
possible to users’ taste. The input to the prediction system is a
dyad, i.e., a user-item pair. For example, user rating systems,
such that of Netflix, Amazon, and YouTube utilize their
users’ preferences for movies, products, or various videos,
respectively, in order to make satisfactory recommendations.
Another application is stock price prediction, where historical
data are utilized in order to make future predictions. The most
successful collaborative filtering models are based on matrix
factorization (MF) techniques [1], [2]. In MF techniques, users
and objects are mapped into the same latent space, such that
their interactions are represented as inner products in this
joint latent space [3]. However, user and object locations are
considered to be fixed through time. That is, a stationary
process is assumed that does not take into account a possible
change in users’ preferences or the dynamic fluctuations of
stock prices through time. Tracking data evolution over time
is crucial for efficient predictions. Collaborative Kalman filter
(CKF) constitutes a dynamic extension of MF methods. In
CFK, user and item vectors are allowed to shift spatially in
the latent space through time according to a multidimensional
Brownian motion [4]. This property enables the model to track
the temporal changes that may occur in user preferences. In
stock price prediction, the Brownian motion drift parameter
is not static, but a dynamic one in order to capture the price

volatility. Thus, a dynamic drift parameter for each stock is
being learned by the model.

Despite the dynamic properties of the CKF model, the
assumption of a fixed variance for the measurement noise (i.e.,
prediction error) does not capture the uncertainty inherent in
stock prices. Moreover, it is assumed that stock price series fol-
low heavy-tailed distributions, because price deviations from
the mean value are more likely to occur than those predicted
by the Gaussian distribution [5]. Motivated by the work in
[6], to address the just described shortcoming, we propose a
robust CKF with a heavy-tailed measurement noise, whose
variance is treated as a random variable, extending thus the
framework proposed in [4]. The aforementioned “uncertainty
about uncertainty” assumption endows the CKF with the
ability to model the volatility of latent state vectors. As a
result, the model tracks consistently the intense fluctuations
of stock prices through time and predicts accurately the
extreme values. Throughout the paper, the following metaphor
is applied: stock prices play the role of users, and the states
of the world play the role of items as in [4]. A dynamic
probabilistic approach is applied to estimate the latent user
and item vector distributions at each time-step. To maintain
tractability, a variational inference approximation of posterior
densities is applied [7].

The outline of the paper is as follows. In Section II,
we review briefly the CKF. In Section III, we introduce
the CKF with heavy-tailed measurement noise. Approximate
distributions are derived in Section IV by means of variational
inference. Experimental results are demonstrated in Section V.

II. COLLABORATIVE KALMAN FILTER

In Kalman filtering, the current state vectors are equal to the
previous state ones plus additive noise [4], [8]. Let yn ∈ Rp
and wn ∈ Rd be the sequences of observed measurement and
latent state vectors, respectively, for n = 1, 2, . . . , N . Assume
that given wn, wn+1 is distributed as a multivariate Gaussian
probability density function (pdf) with mean vector equal to
wn and covariance matrix α I, i.e., wn+1 | wn ∼ N (wn, αI),
where I is the identity matrix of compatible size and α is
a dynamically evolving drift parameter, which reflects the
volatility of wn+1.

Assume that the latent state vector wn in the current state
follows a multivariate normal distribution wn ∼ N (µn,Σn)
with mean vector µn and covariance matrix Σn. To find the



posterior distribution of the next state wn+1, we marginalize
with respect to the current state, obtaining thus p(wn+1) =
N (µn, αI + Σn). In order to exclude negative values, we
model α as a geometric Brownian motion, setting α[t] = ea[t],
where a is a Brownian motion distributed as [4]:

a[t] ∼ N (a[t−∆[t]
a ], ξ∆[t]

a ) (1)

with t−∆
[t]
a being the time elapsed since a[t] was previously

measured and ξ being an extra drift parameter.
Subsequently, after having observed a new measurement,

the posterior distribution is given by a multivariate Gaussian
pdf with mean vector µn+1 and covariance matrix Σn+1, i.e.,
p(wn+1 | yn+1) = N (µn+1,Σn+1). The posterior of wn+1,
then can be used to obtain the prior of the next state wn+2

and so on.
Let ui ∈ Rd and wj ∈ Rd denote the user and item vectors,

respectively, consisting the dyad i, j. The prediction of each
dyad at every time step is carried out by estimating the pdf
of the inner product between ui and wj . In Kalman filtering,
the posterior distributions of latent user and item vectors are
in fact multivariate normal distributions, defined as

ui[t−∆[t]
ui

] ∼ N (µ′ui
[t−∆[t]

ui
],Σ′ui

[t−∆[t]
ui

]), (2)

wj [t−∆[t]
wj

] ∼ N (µ′wj
[t−∆[t]

wj
],Σ′wj

[t−∆[t]
wj

]) (3)

where t − ∆
[t]
ui denotes the time elapsed, since user ui was

previously observed. Let us omit the subscripts ui and wj ,
when they can easily be implied from the context. The mean
vector µ′ and the covariance matrix Σ′ are also dynamically
evolving quantities. The marginalization of Eq. (2) or Eq. (3)
leads to the latent vector prior distributions.

III. COLLABORATIVE KALMAN FILTER WITH
HEAVY-TAILED MEASUREMENT NOISE

The rate of change of stock prices is not constant over time
and an exact pattern cannot be identified. Accordingly, the
main goal is to model the time varying volatility of prices.
We propose a dynamic model, which is capable of capturing
this volatility by means of a combination of Brownian motion
and an uncertain variance of the prediction error, which is
treated as a random variable. If yij is the measurement (i.e.,
stock market price) for the dyad i, j, the following state-space
model is assumed:

ui[t] ∼ N (µui [t],Σui [t]), wj [t] ∼ N (µwj [t],Σwj [t]) (4)

yij [t] | ui,wj , r[t] ∼ N (ui[t]
Twj [t], r[t]). (5)

Eq. (4) refers to the state model, consisted of the prior
distributions of user ui and item wj at time t with prior mean
vector µ and prior covariance matrix Σ,

µ[t] = µ′[t−∆[t]] (6)
Σ[t] = Σ′[t−∆[t]] + ∆[t]α[t] I (7)

where µ′[],Σ′[] are the posterior parameters at t −∆[t], and
α is the geometric Brownian motion drift parameter, which
captures the volatility of latent variables at one unit of time.

Eq. (5) is the measurement model, which asserts that the
distribution of yij given the inner product between ui and
wj is a Gaussian distribution with mean equal to the inner
product of the latent vectors of user ui and item wj at time t
and variance equal to r[t].

The heavy-tailed behaviour of yij can be captured by
treating r[t] as a random variable. Generally, the covariance
matrix of a random Gaussian measurement vector of size d
with a known mean could be considered as random matrix,
whose prior distribution is the inverse Wishart distribution
R[t] ∼W−1(Ψ, v), where Ψ ∈ Rd×d is the scale matrix and
v > d−1 are the degrees of freedom [6]. The inverse Wishart
distribution is the conjugate prior for the covariance matrix of
a jointly Gaussian random vector. Here, we are interested in
the univariate case. Capitalizing on the fact that the conjugate
prior of the variance of the Gaussian random variable yij [t]
is the inverse Gamma distribution, the random variable r[t] at
time step t, is modeled as:

r[t] ∼ IG(η[t], θ[t]) (8)

where η[t] and θ[t] are the shape and scale parameter, respec-
tively, which are referred to as prior hyperparameters. The
conjugacy ensures that the posterior distribution is of the same
form as the prior, allowing for a less complex analysis. The
posterior hyperparameters at time t are computed as:

η[t] = η[t−∆[t]] +
|T |
2

(9)

θ[t] = θ[t−∆[t]] +

∑
t∈T (yij [t]− µy[t])2

2
(10)

where µy[t] =
∑

t∈T yij [t]

|T | is the mean value of the past
observations included in a sliding window T over the time
series and |T | denotes the window length.

IV. VARIATIONAL INFERENCE

The next step is the calculation of posterior distribution at
time step t

p(ui[t],wj [t], yij [t] | r[t]). (11)

As a result of interdependencies, an analytical solution is not
attainable. An approximate solution can be obtained through
variational inference [9]. The approximate solution is obtained
through a factorized distribution,

p(ui[t],wj [t], yij [t] | r[t]) ≈
q(ui[t]) q(wj [t]) q(yij [t]) q(r[t]) (12)

where q(·) is the approximate posterior distribution. In
Eq. (12), statistical independence is assumed between the
variables. At time step t, the Kullback-Leibler (KL) divergence
between the approximate distribution q(·) and the true poste-
rior distribution p(·) should be minimized. The KL divergence
is given by,

KL(q||p) = Eq
[
log

q

p

]
(13)

where Eq[] denotes expectation with respect to pdf q. Practi-
cally, the minimization of KL divergence is infeasible. How-



ever, a function which is equal to KL up to an additive
constant, can be utilized. Such function is known as the
evidence lower bound function L, and it can be obtained by
applying Jensen’s inequality to the log probabilities [7]. The
minimization of KL divergence is equivalent to maximizing L.
This can be achieved by finding the closest distribution family
to the true posterior distribution. For simplicity, the mean-field
variational family is chosen. The objective is to maximize the
following function,

L = Eq[log p(ui[t],wj [t], yij [t], r[t])− Eq[log q] (14)

where the first term on the right-hand side is the expected
joint log-likelihood, while the second term is the entropy of
the approximate distribution.

A. Calculation of variational distribution

The optimization procedure is an iterative one. Only one
variational factor is optimized at a time, while keeping the
other variational factors fixed:

q∗` ∝ exp{E−`[log p(·)]} (15)

where ` ∈ {ui,wj , yij , r}. In Eq. (15), q∗` represents the
optimal solution, which is proportional to the exponentiated
expected log true posterior holding out the distribution of the
variable ` of interest. At each step, Eq. (15) is recomputed.
Thus, the optimal approximate distribution of yij at time t is
a truncated normal distribution [4]:

q∗(yij [t]) = T N (µTui
[t]µwj

[t], r[t]) (16)

where the mean is the inner product between the prior mean
(latent) vectors of user i, ui, and item j, wj , at time t, and
variance equal to r[t].

The respective optimal approximate distributions of the
latent vectors of user ui and item wj at time step t are found
to be multivariate Gaussian distributions:

q∗(ui[t]) = N (µ′ui
[t],Σ′ui

[t]) (17)
q∗(wj [t]) = N (µ′wj

[t],Σ′wj
[t]). (18)

In order to infer the geometric Brownian motion, individual
drift parameters a for each user ui and item wj are assumed
and a point estimation procedure is exploited. The updates of
the drift parameters are found by approximating the relevant
terms in the likelihood with a second-order Taylor expansion
about the last inferred value aui

[t−∆
[t]
aui

]. Let us assume the
second-order Taylor approximation of f(aui

[t]):

f(aui
[t]) ≈ f(aui

[t−∆[t]
aui

])

+
(
aui

[t]− aui
[t−∆[t]

aui
]
)
f ′(aui

[t−∆[t]
aui

])

+
1

2

(
aui

[t]− aui
[t−∆[t]

aui
]
)2
f ′′(aui

[t−∆[t]
aui

])(19)

where f() is chosen as the negative log-likelihood and f ′()
and f ′′() denote its first-order and second-order derivative
at the argument inside parenthesis, respectively. Seeking to

optimize the objective function Eq. (19) with respect to aui [t],
the following updates are obtained [4]:

aui
[t] = aui

[t−∆[t]
aui

]−
f ′(a[t−∆

[t]
aui

])

f ′′(a[t−∆
[t]
aui

])
. (20)

B. Updating the approximate distributions

Since the model has dynamic behaviour, the approximate
distribution q(·) of each variable should evolve as well. A
coordinate ascent update is applied in order to find the opti-
mal parameters of each approximate distribution q(·), which
ensures a global maximum of L.

The following analytical result holds [4]:

Eq
[
yij [t]

]
= Eq

[
ui
]T Eq

[
wj

]
= µTui

[t] µwj
[t] (21)

where µui [t],µwj [t] are the prior mean vectors of ui and wj

at time t, respectively.
The variational update for the parameters of the approximate

q(ui) for user i at time step t are given by [4]:

Σ′ui
[t] =

(
Σ−1ui

[t] +
µ′wj

[t] µ′Twj
[t] + Σ′wj

[t]

r[t]

)−1
(22)

µ′ui
[t] = Σ′ui

[t]

(Eq[yij [t]]µ′wj
[t]

r[t]
+ Σ−1ui

[t] µui [t]

)
(23)

Similarly, the variational update for the parameters of the
approximate q(wj) for item j at time step t is:

Σ′wj
[t] =

(
Σ−1wj

[t] +
µ′ui

[t] µ′Tui
[t] + Σ′ui

[t]

r[t]

)−1
(24)

µ′wj
[t] = Σ′wj

[t]

(
Eq[yij [t]]µ′ui

[t]

r[t]
+ Σ−1wj

[t] µwj
[t]

)
(25)

C. Approximate posterior of the heavy-tailed distribution of
r[t]

The approximate posterior distribution q(r[t]) is of the same
form as the prior distribution of r[t]. That is, q(r[t]) is also
an inverse Gamma distribution, i.e., q(r[t]) ≈ IG

(
η[t], θ[t]

)
.

In order Eq. (5) to hold, the noise statistics should be updated
given the latent states by means of

λui
[t] =

c r[t] + sui
[t]

c+ 1
, λwj [t] =

c r[t] + swj
[t]

c+ 1
(26)

where c > d − 1, with d representing the latent vector
dimension, and sui

[t] and swj
[t] are the following sufficient

statistics of prediction error variance:

sui
[t] = (yij [t]− hTµ′ui

[t])2 + hTΣ′ui
[t]h (27)

swj
[t] = (yij [t]− hTµ′wj

[t])2 + hTΣ′wj
[t]h (28)

with hd×1 ∼ T N (0, I).
Next, the latent state vectors are updated given the noise

statistics. That is, the posterior mean vectors and posterior



covariance matrices of ui and wj found in Section IV-B, are
updated for the next time step t + ∆[t]. Firstly, the Kalman
gain vectors of ui and wj are derived, which are row vectors,
i.e.:

kui [t] =
hTΣ′ui

[t]

hTΣ′ui
[t]h + λui [t]

(29)

kwj [t] =
hTΣ′wj

[t]

hTΣ′wj
[t]h + λwj

[t]
. (30)

The Kalman gain vectors are utilized to update the posterior
mean vector and the covariance matrix for user ui and item
wj as follows:

µui [t+ ∆[t]] = µ′ui
[t] + (yij [t]− hTµ′ui

[t]) kTui
[t] (31)

Σui [t+ ∆[t]] = λui [t] kTui
[t]kui [t] + (I− hkui [t])

T

·Σ′ui
[t] (I− hkui [t]). (32)

Similarly:

µwj [t+ ∆[t]] = µ′wj
[t] + (yij [t]− hTµ′wj

[t]) kTwj
[t] (33)

Σwj
[t+ ∆[t]] = λwj

[t] kTwj
[t]kwj

[t] + (I− hkwj
[t])T

·Σ′wj
[t] (I− hkwj [t]). (34)

V. EXPERIMENTAL RESULTS

Experiments for stock price prediction were conducted on
the time series consisting of opening values from AMEX,
NASDAQ, and NYSE exchange, spanning the period 1962-
2018. The latent state vectors ui and wj have size d = 5.
Each stock is assigned a latent state vector ui, which plays
the role of user. The latent state vector for items is common
across all the stocks, i.e., wj = w1, which is termed as “state-
of-the-world” (SOW) vector. The uncertainty about the stock
prices is modeled by a random variance r[t], which obeys a
heavy-tailed distribution learned by the algorithm. The model
learns a drift parameter aui for each stock. The drift parameter
for the SOW vector was set to aw = −11.7 [4]. The extra drift
parameter ξ was set to ξ = 5× 10−2. The size of the sliding
window was set to T = 20 past prices. Parameter c in Eq.
(26) was set to 8.

Fig. 1: Real BP prices. Fig. 2: Predicted BP prices.

Experimental results on BP, Coca-Cola, Pfizer, and Posco
stock prices are shown in Figures 1–8. Figures 1, 3, 5, and 7
depict the historical stock prices of BP, Pfizer, Coca-Cola, and
Posco companies, respectively. Figures 2, 4, 6, and 8 show the
respective predicted values. At each time step, the predicted
opening value is very close to the real opening stock value.

That is, the predicted prices are approximately identical to
the historical prices. More specifically, the green vertical lines
overlaid in Figures 2, 4, 6, and 8 mark the peaks found in
the historical prices. They are almost perfectly predicted by
the proposed algorithm, demonstrating the accuracy of the
algorithm. The dynamic properties of the model led it to
capture the intense fluctuations and the overall volatility of
stock prices through time.

Fig. 3: Real Pfizer prices. Fig. 4: Predicted Pfizer
prices

Fig. 5: Real Coca-Cola
prices

Fig. 6: Predicted Coca-Cola
prices

Fig. 7: Real Posco prices Fig. 8: Predicted Posco
prices

The stock price prediction performance is summarized in
Table I. In particular, the root-mean-square error (RMSE) for

TABLE I: Stock prices prediction performance.

Stock RMSE
CKF
(USD)

RMSE
RCKF
(USD)

Price range
(USD)

BP 8.3794 2.2650 27.25-147.125
Coca-Cola 3.5529 3.0617 28.875-155.75
Pfizer 4.176 2.3594 11.84-149.187
Posco 3.1148 2.5992 10.375-200.37
Average 4.8058 2.5713 19.59-163.11

various stocks is reported. The second column refers to the



performance of the CKF [4], which was implemented from
scratch. The setting of parameters aui , aw and ξ in CKF
is identical to that used in the proposed model in order to
examine the impact of random variable r[t] modeling. In
CKF,

√
r[t], i.e., the standard deviation of the prediction

error is fixed and equal to 0.01. The RMSE of the proposed
model, abbreviated as RCKF, is shown in the third column.
The RMSE of RCKF is less than that of CKF and very
low compared to the range of the stock prices. The superior
performance of RCKF is attributed to the random variance
r[t], which is properly modeled in the proposed model.
F -tests were applied to each stock in order to examine

whether the differences in RMSE are statistically significant.
The test statistic is defined as F =

σ2
1

σ2
2

, where the subscripts
1 and 2 refer to the CKF and the proposed RCKF model,
respectively. For each model, σ2 = 1

N−1
∑N
l=1(ŷl−ȳ)2, where

ŷl is the predicted price, ȳ = 1
N

∑N
l=1 ŷl is the mean of pre-

dicted stock prices, and N is the number of observations, i.e.,
N = 9, 837 for BP, N = 13, 912 for Coca-Cola, N = 5, 877
for Posco, and N = 11, 313 for Pfizer stock prices. Let
β = 5% be the significance level of the F test. The null
hypothesis is H0 : σ2

1 = σ2
2 which is rejected if F < F1−β/2

or F > Fβ/2, where F1−β/2 = F (1−β/2, N −1, N −1) and
Fβ/2 = F (β/2, N − 1, N − 1) are the critical values of the F
distribution with N − 1 degrees of freedom and significance
level equal to the subscript. Table II gathers the critical values
and the F statistic. The F test indicates that there is evidence
to reject the null hypothesis of equal variances for CKF and
the proposed RCKF at the 0.05 level of significance for BP,
Pfizer, and Posco stocks, but not for Coca-Cola.

TABLE II: F-test.

Stock F1−β/2 Fβ/2 F
BP 0.9618 1.0397 3.2044
Coca-Cola 0.9673 1.0338 1.0279
Pfizer 0.9638 1.0375 4.3565
Posco 0.9501 1.0525 1.7525

VI. CONCLUSION

A robust collaborative Kalman filter for time-evolving
dyadic processes has been proposed, which employs a heavy-
tailed measurement noise. The aforementioned modification
partially rectifies the over-simplistic assumption that stock
prices are treated as Gaussian random variables. The latent
state vectors are shown to be able to track the volatility
of stock prices through time. The experimental results have
demonstrated that the efficient modeling of the measurement
noise variance pays off, yielding a more accurate stock price
prediction than the original collaborative Kalman filter.

Future research would focus on nonlinear stock price mod-
els, where extended Kalman filters, unscented Kalman filters,
or particle filters would be more suitable. Furthermore, nor-
malized innovation squared and normalized deviation squared
consistency tests would reinforce the detection of inconsistent
filter behavior and the loss of tracking for either linear or

non-linear Kalman filters. Besides stock price prediction, the
proposed method has been successfully applied to Netflix
movie rating prediction.
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