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ABSTRACT

Salient dictionary learning has recently proven to be ef-
fective for unsupervised activity video summarization by
key-frame extraction. All relevant methods select a small
subset of the original data points/video frames as dictio-
nary atoms/representatives that, in concert, both optimally
reconstruct the original entire dataset/video sequence and are
salient. Therefore, they attempt to simultaneously optimize a
reconstruction term, pushing towards a dictionary/summary
that best reconstructs the entire dataset, and a saliency term,
pushing towards a dictionary composed of salient data points.
In this paper, a hypothesis is proposed and empirically tested,
namely that more salient data points can be obtained by
attempting to restrain reconstruction error separately for
each original data point. Thus, salient dictionary learning
is extended by adding a third term to the objective function,
pushing towards optimal point reconstruction. A pre-existing
greedy, iterative algorithm for salient dictionary learning is
modified according to the proposed extension in two alter-
native ways. The resulting methods achieve state-of-the-art
performance in three databases, verifying the validity of our
hypothesis.

Index Terms— Salient dictionary learning, matrix recon-
struction, video summarization, key-frame extraction

1. INTRODUCTION

Salient dictionary learning has been recently introduced for
efficiently modelling the problem of activity video summa-
rization by key-frame extraction [1] [2] [3] [4] [5]. Its purpose
is to select a salient subset of representative data points from
a dataset, that are both (in some sense) distinct and able to re-
construct the original dataset. Compared to traditional dictio-
nary learning, the derived dictionary atoms are unaltered orig-
inal data points, as in sparse representatives modelling [6],
instead of linear combinations of original data points. Also,
they are salient in the context of the entire dataset. Thus, an
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optimization problem is formulated that attempts to simulta-
neously minimize the reconstruction error induced by the dic-
tionary and maximize the latter’s saliency.

Although different uses of salient dictionary learning
are possible, as variations on traditional dictionary learning
applications, its efficacy has not been determined for prob-
lems other than unsupervised activity video summarization,
where a dataset corresponds to an entire video sequence,
each data point to a video frame and the produced dictionary
to the desired video summary/key-frame set. The extracted
key-frames must jointly represent the entire original video
sequence as well and succintly as possible. In this domain,
salient dictionary learning fits well within the methodolog-
ical paradigm of previous dictionary-of-representatives ap-
proaches [6] [7] [8], which however ignored video frame
saliency. The only exception known to us is [9], which con-
sidered a limited form of video frame saliency, complemen-
tary to the reconstruction term. More sophisticated, but more
complex video saliency methods (e.g., [10]) have not been
employed in this context. In general, for video summarization
tasks, dictionary-of-representatives methods are mainly con-
trasted with traditional video frame/segment clustering-based
approaches [11] [12] [13].

The interrelated algorithms in [1] [2] [3] [4] [5] all model
the reconstruction term using the matrix Column Subset Se-
lection Problem (CSSP) [14], i.e., the problem of optimally
selecting a subset of matrix columns, so as for the subset ma-
trix to be as close to full-rank as possible. The cardinality of
the column subset, typically much smaller than the number of
original matrix columns, is a fixed, pre-specified parameter.
The CSSP is a NP-hard combinatorial optimization problem
that can be efficiently solved only in an approximate manner.
It had previously been employed for modelling movie shot
selection in a summarization setting [15] [16], but it had not
been used for key-frame extraction before the method in [1].

Salient dictionary learning was evaluated on summariz-
ing activity videos, i.e., video feeds depicting human activ-
ities on a static background, with a static camera and with-
out any editing cuts, using visual word codebook-based video
frame representations [17]. Such a video, consisting in a se-
quence of temporally concatenated human activity segments,
may come from a surveillance camera, from shooting sessions



in TV/film production, etc. The ideal summary/key-frame
set was implicitely defined, through the objective summariza-
tion peformance metric Independence Ratio (IR) [5], as one
containing exactly one key-frame per actual activity segment
(ground truth temporal activity segmentation is assumed to be
known, during algorithm performance evaluation).

In general, salient dictionary learning achieved state-of-
the-art results in comparison to random video frame sam-
pling, video frame clustering [18] and two recent dictionary-
of-representatives methods [8] [9]. The algorithm in [4]
stood out, by achieving top performance in two out of three
datasets while running in near-real-time, and highlighted the
importance of the saliency term for proper video summariza-
tion. From a qualitative perspective, saliency pushes towards
obtaining key-frames with more interesting visual content,
instead of common but uninformative visual words (e.g.,
video frames simply depicting the background, or human
body poses common to multiple activities). From a statistical
point of view, the saliency term pushes towards inclusion of
outliers which would normally be dropped by a traditional
dictionary-of-representatives algorithm, since they do not
contribute significantly to the reconstruction of the entire
original video. Thus, by considering saliency along with re-
construction, better discrimination between different activity
video segments is achieved and the Independence Ratio score
is increased.

In this paper, a hypothesis is proposed and empirically
tested, namely that more salient data points can be obtained
by attempting to restrain reconstruction error separately for
each original data point. While the reconstruction term
pushes towards optimal reconstruction of the entire dataset
(video) and the saliency term pushes towards a dictionary
composed of salient data points (video frames), a novel third
term added to the objective function will push towards op-
timal point reconstruction. Thus, more outlying data points
will be preferred and a different form of data point saliency,
implicitly derived from the optimization process, will be
integrated into the framework.

A pre-existing greedy, iterative, very fast algorithm for
salient dictionary learning [4] is modified according to the
proposed extension in two alternative ways. Thus, two
method variants are constructed: a slow one, based on the
L1 norm of the residual error per data point, and a fast one,
employing the £, norm. The latter one bypasses the need to
compute the residual error matrix at each iteration entirely, by
taking advantage of the original algorithm properties. The re-
sulting methods achieve state-of-the-art performance in three
databases, with the fast method inducing no runtime overhead
compared to [4].

2. METHOD PRELIMINARIES

Below, the general salient dictionary learning framework, the
Column Subset Selection Problem and the specific salient dic-

tionary learning algorithm from [4] are briefly reviewed.

2.1. Salient Dictionary Learning

We assume that D € RV *¥ is a representation of the orig-
inal dataset/video composed of N data points/video frames,
while S € RY*C is the desired salient dictionary/video
summary/key-frame set, composed of C' << N unaltered
columns of D. The i-th column of D, denoted by d.;, is
the V-dimensional representation of the i-th data point/video
frame. s € {0,1}* is a binary-valued selection vector which
codifies whether each original data point will be included in
the dictionary or not. « € [0, 1] is a user-provided param-
eter regulating the contribution of the saliency component.
p € R¥ is a precomputed per-point saliency vector, assign-
ing a scalar saliency value to each original data point/video
frame.

Then, the most basic, simplified form of the general
salient dictionary framework [5] is the following one:

min (1 — a) (|D — SA[,) — a(s"p), M

where || - ||, is a matrix norm and A € R*V is a suitable
coefficients matrix. Obviously, the contents of S depend en-
tirely on vector s and the original dataset matrix D.

2.2. The Column Subset Selection Problem

Given a matrix D € RV*Y and a fixed value C << N, the
matrix Column Subset Selection Problem (CSSP) consists in
optimally selecting exactly C' columns of D, which jointly
form a subset matrix that retains as much of the information
contained in D as possible. Thus, the CSSP is ideal for mod-
elling the reconstruction term in salient dictionary learning,
allowing user-adjustable dictionary succinctness.
Formally, the CSSP objective is the following:

min ; ID — (SST)D||F. )

| - || is the Frobenius matrix norm and S™ is the pseudoin-
verse of S. S approximates D in a projection sense: SST
projects D onto the span of the C' columns contained in S.

2.3. Greedy Salient Dictionary Learning with Regular-
ized SVD-based Saliency

By combining a regularized SVD-based method for pre-
computing data point saliency vector p [3] and a fast, greedy,
iterative method for approximately solving the CSSP [19],
properly adapted to salient dictionary learning, a top-performing
and near-real-time algorithm for unsupervised activity video
key-frame extraction was proposed in [4]. A brief description
is provided below.



Table 1: Mean IR for all competing methods across all databases (higher is better).

L£1-GSD | £L,-GSD | [4] [3] [1] (2] [18] (8] [9]
IMPART | 77.28% | 77.95% | 77.17% | 72.16% | 75.85 | 72.02% | 72.94% | 68.03% | 50.17%
i3DPOST || 79.06% | 75.64% | 77.78% | 75.64% | 72.56% | 74.39% | 72.65% | 65.81% | 44.87%
IXMAS | 67.22% | 67.65% | 65.72% | 66.38% | 62.00% | 66.22% | 65.29% | 66.16% | 46.66%

Table 2: Mean runtime per video frame (in milliseconds) for all competing methods across all datasets (lower is better).

L1-GSD | L,-GSD | [4] (3] [1] (2] [18] (8] [9]
IMPART | 290.48 28.80 | 28.86 | 17.90 | 552.92 | 232.21 | 76.85 | 4043.82 | 427.84
13DPOST | 157.94 31.48 | 31.67 | 42.05 | 517.80 | 262.26 | 70.01 | 2544.20 | 385.35
IXMAS 593.01 49.61 | 49.07 | 80.82 | 734.34 | 461.15 | 225.45 | 8594.31 | 891.95

Initially, p € R is initially precomputed once. It is
a slightly modified version of p from [3], with its entries
(the per-point saliency factors) normalized into the interval
[0,1]. Subsequently, in the main loop, a single data point
is added to the dictionary (initially empty) at each iteration,
so as to greedily minimize the reconstruction error, until the
key-frame set contains exactly C' key-frames. The following
quantities are defined for the ¢-th iteration:

1. s(=1: the currently extracted key-frame set/summary
binary selection vector, prescribing the current sum-
mary S¢=1. Tt holds that [|s*~V|lg =t — 1.

2. RU7Y: the set of the integer temporal indices of all

video frames not contained in S~ Tt contains N —
(t — 1) elements, all in the interval [1, N].

3. 1®): the temporal index of the video frame d.;, that is
actually selected for inclusion in S(*) during iteration ¢.

Obviously, IV € R, but1® ¢ Y.

The method recursively updates two vectors, f, g € R,
Each one keeps track of a scalar score for each video frame
d.;, 0 < 7 < N. At the start of the ¢-th iteration, the most
suitable I(*) is selected for addition to the extracted key-frame
set/summary in the following manner:

fl_(tfl) . fi(tfl)
((1_a) e TP G )
9; 9;

FE=D_ =)

1E€R
3

where is the i-the entry of current vector f, g,
respectively, while p; is the i-th entry of p. Subsequently, £(*)
and g(® are computed according to [19], by updating £(:=1)
and g(*~1) based on the value of {(*). The algorithm is com-
pleted after C iterations.

1) = arg max

=(t—1)

3. GREEDY SALIENT DICTIONARY LEARNING
WITH OPTIMAL POINT RECONSTRUCTION

The greedy method from [4] was extended with optimal point
reconstruction, so as to test our hypothesis described in Sec-
tion 1. To achieve that, two alternative method variants were
constructed: one based on the £; norm of the residual error
per data point, and one using the Lo norm.

In the £;-norm variant, we employed a recursive formula
for easily updating the current residual/reconstruction error
matrix E¢=Y = D — (SS+)(*~1D at the start of iteration ¢,
based on E=2) and ((*—1) [19]:

T
e. (X
E(-D) = g2 _ ol gee2) @)

where e, , is the (!~ 1-th column of matrix E(*~2),

The method in [4] does not keep a residual matrix. By
explicitly initializing such a matrix on the first iteration, and
subsequently updating it using Eq. (4) at the start of the main
loop, we obtain an estimate of the current reconstruction error
(at iteration t) for the ¢-th data point/video frame, in the form
of a per-point residual vector r(t=1) € RV:

rD = eV, 0<i< N 5)
Subsequently, #(*=1 is obtained as follows:
(t—1) T(til)
T :m, 0<t<N, (6)

in order to rescale per-point residuals into the interval
[0,1]. Then, we modify Eq. (3) so as to equally consider
per-point saliency vector p and =1 jn selecting [ OF

(t—1) (t-1)
t) _ _ flj g ~.f17
l _arglr_nax ((1 @) 1) + (z)pz (t71)+ )
(t=1)
o, _t-1)f; =1
+(§)7'§t ) (t—l))’ €R '



By considering #(*~1) at iteration ¢, the currently worst
reconstructed data point/video frame is more likely to be
selected for inclusion in the next iteration’s partial dictio-
nary/summary. If it is indeed selected, it will be optimally re-
constructed from now on, both during the following iterations
and, in the end, when using the finally derived dictionary.
Therefore, a tendency to restrain point reconstruction error is
integrated into the algorithm. Unlike p, which is fixed and
pre-computed, r*~1) is dynamically derived at each iteration
from the optimization process. Thus, it constantly adapts to
the current partial dictionary, until the latter’s construction
has been completed.

The above-described £;-norm greedy salient dictionary
learning with optimal point reconstruction method (£;-GSD)
is computationally inefficient, due to the need to update the
reconstruction error matrix at each iteration using Eq. (4).
Thus, an Ly-norm variant of the algorithm was also devel-
oped (L2-GSD), taking into account the properties of the
base, greedy CSSP method. Specifically, we observed that at
iteration ¢, vector g(t_l) encodes information about the Lo
norm of the current residual vector per data point, due to the
following relation [19]:

(t=1)

t—1
gz( ) — gii )

0<i<N, (8)

where gz(f ~Y is the i-th main diagonal entry of the symmet-

ric matrix Gt~ = FTF, F = E(t-1, Thus, gi(t_l) =
||e(f -b |3, i.e., the squared Lo norm of the current residual
vector per data point is already being implicitly computed by
the algorithm, without actually needing to retain and update E
at each iteration. From an optimization point-of-view, this can
be considered a side-effect of Lo-optimization having closed-
form solutions, in contrast to £;-optimization.

Therefore, the £5-GSD method consists in replacing Eq.
(5) with the following one:

p = gD g <i < N, )

and entirely discarding matrix E. Otherwise, the algorithm
is identical to the £-norm variant, but performs significantly
faster due to the elimination of the residual matrix update step
from Eq. (4).

4. EMPIRICAL EVALUATION

The quantitative evaluation setup from [3] and [4], specially
tailored for activity video key-frame extraction, was rede-
ployed here for evaluating greedy salient dictionary learning
with optimal point reconstruction. A brief description of this
setup is provided below, with more relevant details available
in [5].

Method comparisons were performed against a baseline
clustering approach [18], as well as competing state-of-the-
art methods [4] [3] [1] [2] [8] and [9]. Three specially pro-

cessed activity video databases were employed, namely IM-
PART [20] (330 activity segments, 27252 frames at 720 x 540
pixels), i3DPOST [21] (104 activity segments, 16074 frames
at 640 x 480 pixels) and IXMAS [22] (467 activity segments,
36220 frames at 390 x 290 pixels), along with the Indepen-
dence Ratio (IR) objective evaluation metric.

Three different feature descriptors/modalities were ex-
tracted per video frame: LMoD [23], SIFT [24] and Improved
Dense Trajectories (IDT) [25], aggregated per video frame
under the Improved Fisher Vector (IFV) approach [17]. IFV
codebook size was empirically set to 8, 24 and 32 visual
words for IDT, SIFT and LMoD, respectively, leading to total
dimensionality of video frame representation (after concate-
nation) V' = 17568. In the case of [9], vectorized raw image
pixel values were employed for video frame representation,
due to the nature of the algorithm.

Tables 1 and 2 present the mean IR scores obtained by
all competing methods, across all databases, as well as the
mean execution times per video frame. Only the highest IR
results across five tested values of the saliency contribution
parameter (o = 0, 0.25, 0.50, 0.75, 1.00) are reported per
database. Note that the corresponding IR scores of random
video frame sampling averaged over a million iterations are
58.86%, 59.01% and 59.40%, for IMPART, i3DPOST and
IXMAS, respectively.

As it can be seen, £1-GSD induces a large computational
overhead compared to [4], but achieves the overall best IR
score on the i3DPOST database, as well as the second best
one on the IMPART and IXMAS databases. On the other
hand, £2-GSD has practically identical runtime requirements
to the very fast method in [4], while it achieves the overall best
IR score on the IMPART and IXMAS databases. Thus, our
hypothesis regarding the benefits of optimal point reconstruc-
tion seems to be verified, although more thorough investiga-
tion is required in the context of promising future research.

It must be noted that £2-GSD and [4] are, in general, the
fastest methods by far. The apparent slight runtime advantage
of [3] on the IMPART database is simply an artifact of pre-
senting the evaluation results succinctly: [3] achieved its best
IR performance for saliency contribution factor a = 0, i.e.,
with no saliency term being computed at all.

The IR performance advantage of £1-GSD compared to
L5-GSD in the i3DPOST database can be attributed to the
latter containing a lower percentage of video frames that are
visually outlying: most video frames are relatively similar
to each other, therefore the majority are reconstructed well
using a dictionary. Due to the properties of the Lo norm, Lo-
GSD is not able to discriminate well between video frames
that have almost zero reconstruction error and video frames
that have very low (but non-negligible) reconstruction error.
As a result, the latter ones are incorrectly not favoured by the
algorithm for inclusion in the dictionary being constructed.
Unsurprisingly, the nature of the data significantly affects
method behaviour.



5. CONCLUSIONS

Salient dictionary learning has been extended, using the hy-
pothesis that integrating optimal point reconstruction into
the framework would increase the saliency of the obtained
dictionary. The motivation was the observation that good re-
construction of the entire dataset typically leads to increased
point reconstruction error for outlier data points, which are
very good candidates for conveying salient content. A very
fast, top-performing greedy iterative algorithm for activ-
ity video summarization via key-frame extraction, based on
salient dictionary learning, has been modified in two alterna-
tive ways, so as to incorporate optimal point reconstruction
and test the proposed hypothesis. Empirical evaluation using
an objective evaluation metric in three public databases indi-
cates state-of-the-art performance and showcases the benefits
of optimal point reconstruction.
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