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Abstract—One of the most complex multi-model problems
faced today is Visual Question Answering (VQA), which requires
a machine to properly understand a question about a reference
visual input, expressed in natural language, and then produce
the answer to that question. In order to solve this problem
and increase the probability of producing the correct answer,
it is crucial to provide reliable attention information. However,
existing methods only use implicitly trained attention models
that are often unable to attend to the appropriate image region
the question refers to, limiting their ability to provide the
correct answer. To address this issue, we propose an explicitly
trained attention model that is inspired by the theory of pictorial
superiority effect. In this model, we use attention-oriented word
embeddings that increase the efficiency of learning common
representation spaces. The dataset that we use, the Visual7W
dataset, is the only dataset that provides visual attention ground
truth information. In this paper, we demonstrate the effectiveness
of the proposed method over both implicit attention models and
other state-of-art VQA techniques.

I. INTRODUCTION

Over the past few years, high-level reasoning in terms
of image comprehension has become one of the most chal-
lenging tasks in the field of Artificial Intelligence and it has
received considerable attention, leading to a great amount of
research actively pursuing it, not only in academia but in the
industry as well. Natural Language Processing [1], [2], and
Computer Vision [3], [4], as well as the rapidly increasing
available computational power, have provided researchers the
tools necessary to tackle the problem of building machines
that interlink multiple modalities [5]–[7]. Visual Question
Answering (VQA) [8]–[10], in particular, has become one of
the most prominent multi-modal problems with a plethora of
researchers working on it. VQA requires a machine to properly
understand a question, posed in natural language, about a
reference visual input, i.e., an image, and then to infer the
correct answer.

Attention mechanisms attempt to provide fine-grained in-
formation with respect to a visual content and the task at hand
[8], [11]. Those mechanisms work based on the assumption
that image regions, which provide information relevant to
the corresponding question, will develop stronger associations
with that question [8], [11]. On the other hand, image regions
that are irrelevant to the question will exhibit diminished
associations to the corresponding question [8], [11]. Therefore,
these attention models are trained implicitly, i.e., there is no
prior information for the correct attention regions. However,
it was recently shown that using explicitly trained attention
models can significantly improve the accuracy for the task of

Fig. 1: Example of explicit attention. The proposed method
provides better attention information given a question than the
implicit attention model.

automatic caption generation [12], which is a similar multi-
modal problem. This is also demonstrated in Figure 1.

In this paper we proposed a novel explicitly-trained at-
tention model for VQA tasks. Taking into consideration the
pictorial superiority effect, which states that people tend to
recall images better than words [13], [14], we propose using
separate word embeddings for the attention model that are
independent from the embeddings that are used for answering
questions. This way, learning common representation spaces
where each word is closer to the visual representation of its
semantic content is facilitated. Finally, we use the Visual7W
dataset [8], which is the only dataset that provides visual
attention ground information, to evaluate the proposed method.
To the best of our knowledge, this is the first work that exploits
the visual attention ground information of the Visual7W to
train more accurate attention models. Finally, using extensive
experiments, it is demonstrated that the proposed method is
more effective compared to implicit attention models or other
proposed VQA techniques.

The rest of the paper is structured as follows. The related
work is briefly discussed and compared to our approach in
Section II. The proposed method is presented in Section III,
while the experimental evaluation is provided in Section IV.
Finally, conclusions are drawn and future work is discussed in
Section V.

II. RELATED WORK

The methods proposed for tackling VQA tasks can be
divided into two categories: the fist one is composed of
generative methods, where the answer is generated in free-
form text, while the second one of classification-based meth-
ods, where the correct answer is chosen among a set of
predefined answers. Most generative methods use recurrent



models, such as Long Short-Term Memory Units (LSTMs),
to answer the question at hand [6], [15], [16]. Generating
the question in free-form text also complicates the evaluation
procedure, since multiple possible answers can be correct
given the same question [17]. The classification-based methods
extract features from the input modalities and then use a
classifier to determine the correct answer [17]–[20]. Some
of these methods also use recurrent models to provide better
encoding of the input modalities [8], [16], [21]. However it
worths mentioning that it was recently found that using a
simple triplet (question-answer-image) model [17] can actually
improve the precision of the model over most other more
complicated methods proposed in the literature. In this work,
we also use a triplet-based classification model (more details
are given in Section III) that is extended with the proposed
explicit attention model.

There is also a rich literature on using implicit attention
models to improve visual analysis tasks. Implicit attention
models usually work by learning weighting coefficients (or a
probability distribution) over each image region (as expressed
through the extracted feature maps, if a Convolutional Neural
Network (CNN) is used) to improve the accuracy of the
models for the task at hand, e.g., [11], [22]–[25]. Implicit
attention have been also used to tackle VQA tasks [8]. Using
explicit attention, i.e., using an attention module that was
trained with ground truth human attention information, has
been investigated for use for caption generation tasks in [12],
and it was shown to improve the accuracy of the model over
using plain implicit models. To the best of our knowledge we
propose the first explicit attention model for dealing with VQA
tasks.

III. PROPOSED METHOD

In this Section we introduce the used notation and we
describe the proposed explicit attention model as well as the
complete pipeline of the proposed visual question answering
system in detail.

A. Explicit Attention Model

The gist of the proposed explicit attention model is to
reduce the semantic gap between textual and image represen-
tations. To this end, we directly learn to attend the parts of an
image that correspond to the given question in order to high-
light only the regions that should be used to infer the answer.
To further increase the flexibility of the attention mechanism, a
separate word embedding model is used independently of the
word embedding model that it is used to infer the answer to
the question. This idea is inspired from the theory of pictorial
superiority effect [13], [14], that states that “human memory is
extremely sensitive to the symbolic modality of presentation of
event information” [26]. It was also experimentally confirmed
that decoupling the word representations used for visual tasks,
e.g., for providing the attention, from the word representation
used for the textual tasks, e.g., for answering the question at
hand, improves the overall accuracy of the system.

The architecture of the proposed explicit attention model
is summarized in Figure 2. Let Q = {q1, . . . ,qN} be a given
question, where N is the total number of words in the question,
qi ∈ RDw is the embedding vector for the i-th word, and

Fig. 2: The architecture of the proposed explicit attention
model.

Dw is the dimensionality of the word embedding. Also, let
Im ∈ RDm×Dm×Dd be the feature map used for providing the
attention, where Dm×Dm is the size of the extracted feature
map and Dd the number of filters used in the corresponding
convolutional layer.

Given a question Q we first embed the words into a
textual vector space using a word embedding model. After
that, we extract the global question representation Qf ∈ RDw

of the question Q by averaging the embeddings over all
words of the question, where Dw is the dimensionality of
the word embedding. The attention distribution pI over the
convolutional feature map Im given the question Q is defined
as:

(1)hc = [tanh(Im×WI);1Dm×Dm×1 × tanh(Qf ×WQ)]

∈ RDm×Dm×2Dc ,

pI = softmax(relu(hc×Wh1)×Wh2) ∈ RDm×Dm , (2)

where 1Dm×Dm×1 is a matrix used for repeating tanh(Qf ×
WQ) Dm×Dm times in hc, and WI ∈ RDd×Dc and WQ ∈
RDw×Dc are the projection weights used for constructing a
common representation space (Dc is the dimensionality of this
space). Equation (2) provides the attention distribution over
the image regions (as expressed through the extracted feature
map). Note than a simple Multilayer Perceptron (MLP) with
Dh hidden units is used to this end, i.e., Wh1 ∈ R(2Dc)×Dh

and Wh2 ∈ RDh×1. We use the extracted attention distribution
pI ∈ RDm×Dm to provide the final attention representation:

Im′ =

Dm∑
i=1

Dm∑
j=1

pI ijImij ∈ RDd . (3)

In order to train the proposed explicit attention model,
ground truth bounding boxes BT that associate the correct
answer with the different regions of the image are used. The
ground truth attention target is set as:

α̂ =
α

||α||0
∈ RDm×Dm , (4)

where α = [α1, α2, . . . , αDm×Dm
] and

αt =

{
1 if t overlaps with any bounding box b ∈ BT

0 otherwise
(5)

is the ground truth attention membership value of the t-th part
of the extract feature map into the ground truth bounding
box set BT and ||α||0 is the number of 1s that exist in
the membership vector. Note that we use nearest-neighbor



Fig. 3: The architecture of the proposed visual question an-
swering model.

interpolation to assign each bounding box to the parts of
the feature map that it belongs. Then, we train the model
to attend the ground truth regions by minimizing the cross-
entropy loss between the predicted attention distribution and
the target attention distribution:

Jatt = −
Dm∑
i=1

Dm∑
j=1

α̂ij log(pI ij). (6)

B. Visual Question Answering Model

Jabri et al. [17] proposed a simple baseline model for
visual question answering and showed that using a binary
classifier to predict whether a given question-image-answer
triplet is correct can significantly improve the results over
more complex models or trying to directly generate the correct
answer using recurrent models. In this work we adopt a similar
triplet-based evaluation setup. The architecture of the proposed
visual question answering model that utilizes the proposed
explicit attention model is shown in Figure 3. Note that the
model consists of two parts, the Feature Embedding layer and
the Multiple Choice (MC) layer.

In the feature embedding layer we extract representations
from the input modalities. First, an explicit attention model
is used to provide the attention vector. Then the question and
the answer are encoded using the average embedding vector,
similarly to the approach used in [17]. The notation Qf and
Af is used to refer to these embedding vectors. However, note
that in contrast to previous works we use separate embedding
models for the textual tasks, i.e., predicting whether the given
answer is correct, and for the visual tasks, i.e., providing the
attention distribution.

After extracting feature vectors from the input modalities
we use an MLP to predict whether the given question-answer-
image triplet is correct. Therefore, the MC layer outputs a
scalar value that indicates the correctness of the given input
question-answer-image triplet. Instead of directly feeding the
extracted feature vectors into the used MLP we also calculate
the similarity and the distance between the representation
of the image, the question and the answer. Therefore, the
following vector is fed into the final classifier:

[Qf ;Af ;Qf�Af ; ‖Qf −Af‖; Im′ ; Im′�z] (7)

where � is the Hadamard product operator, Im′ ∈ RDd

denotes the attention representation vector extracted from the
attention model and z is the result of the transformation layer
that transforms the concatenated vector of the question and the
answer into a common representation space. The output of this
transformation layer is computed as:

tqa = [Qf ;Af ] ∈ R2Dw (8)

z(n) = σ(tqaW
(n)
qa + b(n)

qa ) ∈ RDd (9)

where W
(n)
qa and b

(n)
qa are the parameters of the transformation

layer and σ(·) denotes the sigmoid activation function.

After computing the aforementioned input vector we use an
MLP with 8096 hidden units, rectifier activation functions in
the hidden layer and sigmoid activation function for the final
output to predict the correctness score for the input triplet.
The proposed model was optimized by minimizing the binary
logistic loss.

IV. EXPERIMENTS

We evaluate the proposed model on the Visual7W Telling
dataset [8], which is a subset of the Visual Genome
dataset [27]. The dataset contains 69,817 training questions,
28,020 validation questions and 42,031 test questions. Each
question comes with 4 possible answers of which only one
is correct. The negative choices are human-generated and
the performance is measured by the percentage of correctly
answered questions. In addition, this dataset contains visual
bounding boxes for the images that are associated with the
answer of each question (attention ground truth information).
This allows us to train explicit attention models with the
supplied annotations. Note that only a fraction of the questions
are annotated with bounding boxes that can be used for training
the explicit attention model (30,491 training questions, 12,103
validation questions and 18,253 test questions).

For developing the proposed model we used the theano
library [28], and the Lasagne framework [29]. We use the
Adam optimizer with the default settings [30]. For the explicit
attention model we use a learning rate of 0.001 and for the
multiple choice answering model a learning rate of 0.0001.
The batch size for training both models is set to 16. We apply
dropout with probability of 0.2 and batch normalization on
MC Layer. The explicit attention model was trained for 5
epochs and the multiple choice answer model was trained
for 12 epochs using the training and validation sets. For
extracting the convolutional feature map we used the pre-
trained deep residual network, ResNet-152 [24]. The feature
maps were extracted from the last convolutional layer of
the network. For extracting textual representations we used
pre-trained GloVe embedding vectors (Common Crawl (42B
tokens), 300d) [1]. Note that the GloVe embeddings were used
only for initialization and then they were optimized during
the training. For measuring the performance of the developed
model we followed the procedure described in [8], using the
toolbox supplied by the authors of [8].

The evaluation results are shown in Table I. The accuracy
of the models for each question type is shown in columns
2-7, while the overall accuracy is shown in the last column.
The proposed explicit attention model achieves higher overall



Fig. 4: Comparing between implicit attention and explicit attention models.

TABLE I: Comparing the proposed explicit attention method to implicit attention

Method What Where When Who Why How Overall
Implicit 0.617 0.706 0.801 0.693 0.602 0.532 0.634
Proposed 0.642 0.748 0.825 0.729 0.623 0.536 0.659

TABLE II: Comparing the proposed method to other baseline
and state-of-the-art VQA techniques

Method Overall
Human (Question + Image) [8] 0.966
Logistic Regression (Q + I) [8] 0.352
LSTM (Q + I) [15] 0.521
LSTM-Att [8] 0.556
MCB [31] 0.622
Triplet MLP [17] 0.671
Proposed 0.659

question answering accuracy over the baseline implicit atten-
tion model. Using explicit attention increases the answering
accuracy for every question type (especially for the “what” and
“why” questions where providing reliable attention is crucial).
This fact is also confirmed in Figure 1 and Figure 4, where
the implicit attention model and the proposed explicit attention
model are compared using some of the test question and
images. It is evident that the proposed method significantly
improves the attention accuracy. The explicit attention also
significantly improves the “How many”-type questions. This
can be better understood from the question “How many
elephants are there”, where it is evident that attending to the
correct region of the image is vital for correctly answering
the question. Similar conclusions can be drawn for the rest of
the images. Finally, the proposed method is compared to other
baseline and state-of-the-art VQA techniques in Table II. The
proposed method achieves the second higher VQA accuracy.
We tried to use the network architecture proposed in the Triplet
MLP method (which provides the best baseline accuracy) [17],
but we were unable to reproduce the reported results, since

not all the details of the used setup are reported. However,
combining the explicit attention model with the exact setup
used in [17] is expected to further improve the accuracy
(as already demonstrated in Table I using a weaker baseline
model).

V. CONCLUSIONS

In this paper, we demonstrated that using an explicitly
trained attention model the VQA accuracy can be significantly
improved compared to other implicit attention models and
VQA techniques. In addition, we developed a mechanism that
it is inspired by the pictorial superiority effect and further
improves answering accuracy. This paper paves the way for
multiple interesting future directions, including techniques that
could be used to combine multiple attention models, similar
to other ensemble models [32]. In addition, in the proposed
method the attention model is not trained if a question does not
contain ground truth bounding boxes. Exploiting the informa-
tion contained in these image-question pairs, in a way similar
to the implicit attention, can lead to a hybrid implicit-explicit
attention model that can further improve the visual question
answering accuracy. Furthermore, a pyramid Bag-of-Features
(BoF)-based representation can be extracted, e.g., using the
techniques proposed in [33], and [34], to provide fine-grained
visual information and further increase the VQA accuracy.
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