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ABSTRACT
The Electric Network Frequency (ENF) criterion provides useful
forensic evidence for multimedia authentication. In this paper, a
systematic study of non-parametric and parametric spectral estima-
tion methods is conducted for ENF extraction. Fast implementations
of the Capon method and the Iterative Adaptive Approach, which
exploit the Gohberg-Semencul factorization of the inverse covari-
ance matrix, are included as well. When long segments are used,
a very high matching accuracy is achieved. That is, the maximum
correlation-coefficient between the extracted ENF and the ground
truth may exceed 99%. Similarly, the standard deviation of error
may be as small as 1.069 · 10−3. Non-parametric spectral estimation
techniques are shown to be able to detect an alteration in an audio
recording, where a short utterance recorded in Europe is replaced
by the same content recorded in the US.
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1 INTRODUCTION
Multimedia forensic analysis is widely used due to the rapidly in-
creased volume of shared audio and video recordings. However, the
multimedia content can be edited, altered, and modified for various
purposes. In forensic sciences, authenticating digital content and
determining the time and place of recording are critical tasks.

A forensic tool, which is used for forgery detection in multimedia
recordings is the Electric Network Frequency (ENF) criterion [9].
ENF is the supply frequency in power distribution networks and its
nominal value is 50Hz in Europe and 60Hz in the U.S. The major
property of ENF signal is that its value is fluctuating in a random
way around its nominal value. These fluctuations are assumed to
be identical through an inter-connected network.

Adaptive techniques for ENF extraction are proposed in [15],
where a detailed comparison between various techniques is made. In
[11], different methods of ENF estimation are elaborated, addressing
the problem of geo-location estimation from the ENF signal. A more
precise and detailed study focusing on determining the intra-grid
location of recordings is discussed in [3]. In [5], the ENF signal is
modeled as an autoregressive process. Computationally efficient
maximum-likelihood estimation via a multitone harmonic model

is presented in [1]. Apart from digital audio recordings, the ENF
signal can be extracted from digital video content recorded in indoor
environments with the presence of fluorescent lighting [4] in order
to estimate the time of recording and verify its authenticity.

In this paper, we assess case studies of ENF extraction, resorting
to either non-parametric spectral estimation methods (e.g., peri-
odogram and refined periodogram methods, such as Blackman-
Tukey, Welch and Daniell, Capon spectral estimator, Interative
Adaptive Approach [IAA]) or parametric ones (e.g., Estimation by
Rotational Invariance Techniques [ESPRIT], Multiple Signal Clas-
sification [MUSIC]). Fast algorithms for Capon and IAA spectral
estimation methods are included as well by exploiting the Gohberg-
Semencul factorization of the inverse covariance matrix [7, 8, 19].
All methods are applied to consecutive frames of data recorded
from the power mains as well as the audio recording as used in [15].
The fundamental ENF and its harmonics are estimated by track-
ing the maxima of the power spectrum, and applying quadratic
interpolation in each frame [15]. Motivated by Professor Petre Sto-
ica’s “Spectral estimation is an art”, here we put emphasis on the
details of band-pass (BP) filtering of raw signal prior to spectral
analysis and the fine tuning of parameters involved in spectral
analysis techniques, which enable us to report more accurate re-
sults than those disclosed in [1, 15]. This is the first contribution
of the paper. Besides the fundamental frequency, ENF extraction is
carried out in its higher harmonics, which demonstrate a higher
SNR than the fundamental one, yielding better results, as observed
also in [14]. In addition to existing matching procedures between
the extracted ENF time series and the ground truth one of equal
length, efficient dynamic time warping (DTW) is employed and
assessed, which allows the aforementioned time series to have dif-
ferent lengths and eliminates the need to downsample the ground
truth ENF time series, as is tacitly assumed in [15]. This is the sec-
ond contribution of the paper. When long stationary segments of
the extracted ENF time series (e.g., having duration 20 sec or so)
are used, a very high matching accuracy is achieved. Such long seg-
ments are not always available in practice. Accordingly, the third
contribution of the paper is in assessing ENF extraction methods
from short utterances. To do so, an alteration in an audio recording
was devised by replacing a short utterance recorded in Europe by
the same utterance recorded in the US with the latter being per-
ceptually indistinguishable from the former in order to assess the
limits of spectral estimation methods for ENF extraction. Simple
non-parametric spectral estimation techniques, such as the peri-
odogram and Daniell method, are shown to be able to detect the
aforementioned alteration in the audio recording. To the best of
authors’ knowledge, such an experiment is conducted for first time.



Table 1: Frame parameters (in sec)

Parameters Data 1 Data 2
Time shift, T 1 1
Frame length, L1[15] 20 33
Frame length, L2 40 50

The rest of the paper is organized as follows. In Section 2, the
datasets used and the band-pass filtering of raw signals prior to
spectral analysis are described. Spectral analysis methods for ENF
estimation are briefly presented in Section 3. The results of all
methods are demonstrated in Section 4. Section 5 concludes the
paper and proposes topics of future research.

2 DATASET DESCRIPTION
The two datasets discussed in [15] and the ENF ground truth asso-
ciated to them are used here as well. The first dataset (Data 1) was
recorded by connecting an electric outlet directly to the internal
sound card of a desktop computer and the second one (Data 2) was
a speech recording captured by the internal microphone of a laptop
computer. For both recordings the initial sampling frequency was
44.1kHz. At first, the original recordings are downsampled to a
frequency that contains the fundamental frequency and some of its
higher harmonics, i.e., Fs = 441Hz. The next step includes band-
pass filtering of the signal around the nominal ENF or its harmonics.
For the signal recorded from the power mains, the band-pass edges
of the filter are set at 59.9Hz and 60.1Hz for the fundamental fre-
quency and the filter order is 1501. The second harmonic band-pass
edges are set at 119.9Hz and 120.1Hz, respectively. The filter order
remains the same, i.e., 1501. The third harmonic band-pass edges
are set at 179.9Hz and 180.1Hz and the filter order is equal to 1001.
In each case, a Hamming window is used. For the audio recording,
the band-pass edges are set at 119.95Hz and 120.05Hz and the
filter order increased to 4801. The different specifications are due to
the “noisy” nature of the audio recording. Next, the filtered signal is
split into K overlapping frames. Each frame is obtained by applying
a rectangular window of length L sec and is shifted byT sec from its
immediate predecessor frame. Two choices for L, denoted as L1 and
L2, are indicated in Table 1 along with T . In each frame, the power
spectrum is estimated by various spectral analysis techniques.

A third dataset was created by concatenating the 10 recordings
uttered by TIMIT female speaker ID TEST\DR1\FAKS0 [6] to create
an audio signal recorded in the US. The same 10 utterances were
played back from the loudspeakers of a notebook connected to
the power mains at Thessaloniki, Greece and recorded by various
mobile phones during the collection of the MOBIPHONE database
[13]. The European (EU) recording has duration 38.5677 sec. The
utterance SA2 “Don’t ask me to carry an oily rag like that” in the
European recording was replaced by the same utterance recorded
in the US in a perceptually indistinguishable manner. By doing
so, the European recording was altered by inserting a 3.6288 sec
long utterance with nominal ENF of 60Hz starting from 5.3125
sec and ending at 8.9413 sec, while the remaining recording has
a nominal ENF of 50Hz. Let us refer to the third audio signal as
mixed recording. Both the mixed recording and the European one
have the same duration. The sampling frequency of all recordings

is 16kHz. Downsampling by a factor of 10 is found beneficial for
the US and EU recordings. These recordings were filtered by a
Finite Impulse Response (FIR) BP filter of order 4801 centered at
the second harmonic of ENF with band-pass edges set at 119.95Hz
and 120.05Hz as well as 99.95Hz and 100.05Hz, respectively. On
the contrary, the mixed recording was filtered by an FIR BP filter
of order 1501 with band-pass edges set at 49.95Hz and 60.05Hz.

3 SPECTRAL ESTIMATION METHODS FOR
ENF EXTRACTION

Assuming stationaritywithin the frame, the simplest non-parametric
method for estimating the ENF is the short-time Fourier Transform
(STFT). That is, frame by frame, the periodogram of each frame
is computed by squaring the magnitude of the STFT. Let ϕ̂r (ωq )
be the periodogram of the N=L Fs samples long r th frame, where
ωq= 2π

Q q, q=0, 1, . . . ,Q − 1 are the frequency samples and Fs is the
sampling frequency. Typically, Q ≥ N , i.e., Q=4N . The frequency
sample ωqmax , which corresponds to the maximum periodogram
value is extracted as a first ENF estimate. Next, a quadratic interpo-
lation is employed, which fits a quadratic model to the logarithm of
the estimated power spectrum about ωqmax [15, 17]. Hereafter, the
aforementioned spectral estimation method is replaced by other
non-parametric and parametric spectral analysis methods.

A refined periodogram method is the Welch method [18]. In this
method, each frame is divided into overlapped segments and each
segment is multiplied by a temporal window. Let yj (t) denote the
jth segment. Adjacent segments overlap by 1000 samples and each
segment has length ofM = N

4 =
LFs
4 samples. The Welch estimate

of power spectral density (PSD) is given by ϕ̂w (ω) = 1
S
∑S
j=1 ϕ̂ j (ω),

where S = 7 and ϕ̂ j (ω) is the windowed periodogram corresponding
toyj (t). Here, a rectangular window has been employed. TheWelch
method yields accurate ENF estimation without being affected by
interferences, especially in the second harmonic of the ENF in both
datasets.

The Welch estimator can be related to the Blackman-Tukey (BT)
spectral estimator for suitable choices of the lag window and the
auto-covariance estimate [18]. Accordingly, a natural choice for
a refined periodogram is the Blackman-Tukey estimate given by
ϕ̂BT (ω) =

∑M−1
q=−(M−1)w(q) r̂ (q) e−iω q , where M = N

2 = L Fs
2 for

the first and third harmonic and M = N = L Fs for the second
harmonic in both datasets. Another non-parametric method is the
Daniell method [18], which yields the refined spectral estimate
ϕ̂D (ωq ) =

1
2J+1

∑k+J
j=k−J ϕ̂p (ωj ) for dense frequency samples ωq =

2π
Q q, q = 0, 1, . . . ,Q − 1. Here, the values J = 2 and Q = 4N =
4L Fs have been used.

The periodogram can be interpreted as a filter bank approach,
which uses a band-pass filter whose impulse response vector is
given by the standard Fourier transform vector α =

[
1, e−iω , . . . ,

e−i (N−1)ω
]T

. Let R̂ be an estimate of the auto-covariance matrix

R̂ =
1

N −m

N∑
t=m+1


y(t)
...

y(t −m)


[
y∗(t), . . . ,y∗(t −m)

]
(1)
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The Capon method is a filter bank approach based on a data-
dependent filter [18]: h = R̂−1 a(ω)

a∗(ω) R̂−1 a(ω)
, where a(ω) =

[
1, e−iω ,

. . . , e−i m ω ]∗ and [·]∗ denotes conjugate transposition. The Capon
spectral estimate is given by:

ϕ̂(ω) =
m + 1

a∗(ω) R̂−1 a(ω)
(2)

computed for dense frequency samplesωq = 2π
Q q, q = 0, 1, . . . ,Q−

1 with Q = 300m andm = 10 for the second and third harmonics
of Data 1 and Data 2. The first harmonic is computed withm = 2
and Q = 5000m in each case.

The IAA is a non-parametric alternative toweighted Least Squares
method as presented in [20]. Let yN =

[
y(t), . . . ,y(t + N − 1)

]T
be the data vector. Let also fN (ωq ) =

[
1, eiωq . . . , eiωq (N−1)]T

be the frequency vector, where q = 0, 1, . . . ,Q − 1 and Q is the
number of frequency samples taken as a multiple of N . Assume
FN ,Q =

[
fN (ω0)| . . . |fN (ωQ−1)

]
. The sample covariance matrix is

given by RN = FN ,QPQF∗N ,Q , where PQ is the diagonal matrix
whose diagonal elements are obtained by the squared magnitude
of the following estimate

xq =
f∗N (ωq )R−1N yN

f∗N (ωq )R−1N fN (ωq )
(3)

at the previous iteration, say pq = |x−q |
2. Both RN and xq are calcu-

lated iteratively until practical convergence. For Data 1 and Data 2,
N = 2 Fs and Q = 2N . Fast implementations of IAA, referred to
as F-IAA, were proposed in [7, 8, 19], which exploit the Gohberg-
Semencul factorization of the inverse covariance matrix, building
on the Hermitian Toeplitz structure of the covariance matrix and
resorting to fast Fourier transforms. Such fast implementations
were applied here to reduce the extremely high computational
requirements of IAA.

ENF estimation can be cast as a line spectrum estimation problem.
Accordingly, one may choose a suitable parametric method for
solving the just described problem, such as ESPRIT, as was done
in [15]. In particular, one has to choose the size m of the biased
m ×m auto-covariance estimate R̂ and the number of frequency
samples Q to be estimated. Let Im−1 denote the identity matrix
of size (m − 1) × (m − 1). The frequencies

{
ωq

}Q
q=1 are estimated

as − arg(v̂q ), where
{
v̂q

}Q
q=1 are the eigenvalues of the estimated

matrix ϕ̂ [18]:

ϕ̂ = (Ŝ∗1Ŝ1)
−1 Ŝ∗1Ŝ2 (4)

Ŝ1 = [Im−1 |0] Ŝ (5)

Ŝ2 = [0|Im−1] Ŝ (6)
and Ŝ is the matrix having as columns the Q principal eigenvectors
of R̂. Here,m = 4 and Q = 2.

The MUSIC algorithm [18] is another suitable method for ENF
extraction. First, the biasedm ×m auto-covariance estimate R̂ is
computed. Next, the so-called “pseudospectrum” is estimated:

PMU =
1

a∗(ω) Ĝ Ĝ∗ a(ω)
(7)

PMU reveals which sinusoidal components are present in the signal.
Ĝ denotes the matrix made from the eigenvectors of R̂ spanning
the subspace of noise. The valuesm = 4 and Q = 2 for Data 1 and
Data 2 are used.

Having extracted the ENF, a matching procedure has to be per-
formed against the ground truth information in order to identify
the recording time. The ground truth ENF time series is downsam-
pled by a factor of 10. Using the notation introduced in [15], let
f = [f1, f2, . . . , fK ]

T be the extracted ENF signal, which comprises
the ENF estimated at each second. Let also g =

[
д1,д2, . . . ,дK̃

]T
for K̃ > K be the reference ground truth ENF. In [2], the associa-
tion is being done by minimizing the squared error between f and
g̃(l) = [дl ,дl+1, . . . ,дl+K−1]

T , i.e.,

lopt =
K̃−K+1
argmin
l=1

∥f − g̃(l)∥22 (8)

An alternative matching criterion, proposed in [12], is the corre-
lation matching, i.e.,

lopt =
K̃−K+1argmax
l=1

c(l) (9)

where c(l) is the sample correlation coefficient between f and g̃(l)
defined as:

c(l) =
fT g̃(l)

∥f ∥2 ∥g̃(l)∥2
(10)

Tomeasure the accuracy of ENF extraction by various algorithms,
one may employ the maximum correlation coefficient c(lopt ). Al-
ternatively, one may employ the standard deviation of the error
between the true ENF and the estimated one. The former figure of
merit was found to be more accurate than the latter one [12].

Another method for matching the extracted ENF to the ground
truth is the DTW. Letd(k, l) = (fk−дl )

2. To align the two time series
f and g, a warping path is found very efficiently using dynamic
programming and enforcing proper constraints to evaluate the
recurrence which defines the cumulative distance γ (k, l), for k =
2, . . . , K̃ :

γ (k, l) =


d(k, l) + γ (k − 1, l) for l = 1
d(k, l) +min

{
γ (k, l − 1),

γ (k − 1, l − 1),γ (k − 1, l)
}

for l = 2, . . . , K̃
(11)

assuming that

γ (1, l) =
{
d(1, l) for l = 1
d(1, l) + γ (1, l − 1) for l = 2, . . . , K̃ . (12)

Here, the modified version of the original DTW with novel opti-
mizations introduced in [16] is used.

4 EXPERIMENTAL EVALUATION
First the ENF extraction methods are tested on Data 1 and Data 2
using the two choices of frame length L, namely L1 as in [15] and
L2 as shown in Table 1. The first choice allows comparisons with
the results disclosed in [15]. The second one is used for studying
the behavior of ENF extraction methods, when longer frames are
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used. For the F-IAA implementation, a 2 sec frame length is used
due to high time requirements that arise from repeatedly matrix
inversions in the iterative process.

Table 2: Maximum correlation coefficient for various meth-
ods applied to Data 1 with frame length L1

Algorithm 60Hz 120Hz 180Hz
STFT 0.9886 0.985 0.9957
Welch 0.9983 0.985 0.9983
Blackman-Tukey 0.9924 0.985 0.9978
Daniell 0.9906 0.985 0.9977
Capon 0.9969 0.9909 0.9972
F-IAA 0.9571 0.9784 0.964
ESPRIT 0.9979 0.9913 0.9979
MUSIC 0.9979 0.9913 0.9979

For Data 1 using the frame length L1, the accuracy between the
ENF signal extracted by various spectral analysis methods and the
ground truth, measured by frequency disturbance recorders with
accuracy up to about ≃ 0.0005Hz [15], is summarized in Tables 2
and 3. The maximum correlation coefficient is listed in Table 2,
while the minimum standard deviation of error is gathered in Ta-
ble 3. It is seen that the first harmonic and the third one is more
accurately estimated than the second one. For the first and third
harmonics, the Welch method yields the best performance with
respect to both figures of merit. Compared to [15], the accuracy
of the ESPRIT method applied to Data 1 is increased from 0.947
to 0.9913 for the second harmonic, which is the weakest. Simi-
larly, the standard deviation of error is reduced from 6.57 · 10−3 to
2.901 · 10−3. The most effective method proposed in [15] is STFT
(Tracking), which uses a discrete dynamic programming approach.
The maximum correlation coefficient of this method applied to
Data 1 is 0.9968 for the third harmonic and the standard deviation
of error is 1.851 · 10−3. With respect to both figures of merit, the
methods discussed here outperform STFT (Tracking). Using DTW,
the minimum cumulative distance between the aligned time series
f and g is obtained when the Welch method is used, as shown in
Table 4. Matching the extracted ENF to the ground truth with DTW
is reliable even for the second harmonic, which is the weakest.

Table 3: Minimum standard deviation of error for methods
applied to Data 1 with frame length L1

Algorithm 60Hz 120Hz 180Hz
STFT 2.806 · 10−3 3.202 · 10−3 1.303 · 10−3
Welch 1.069 · 10−3 3.202 · 10−3 1.069 · 10−3
Blackman-Tukey 2.284 · 10−3 3.202 · 10−3 1.218 · 10−3
Daniell 2.542 · 10−3 3.41 · 10−3 1.245 · 10−3
Capon 1.445 · 10−3 2.659 · 10−3 1.395 · 10−3
F-IAA 1.491 · 10−2 9.263 · 10−3 8.523 · 10−3
ESPRIT 1.198 · 10−3 2.901 · 10−3 1.202 · 10−3
MUSIC 1.198 · 10−3 2.901 · 10−3 1.208 · 10−3

By employing the frame length L2, one expects more fine spec-
tral resolution at the cost of lower time resolution. This is evident in

Table 4: Cumulative distance between the aligned time se-
ries f and g found by DTW for various methods applied to
Data 1 with frame length L1

Algorithm 60Hz 120Hz 180Hz
STFT 5.63429 6.05339 2.37785
Welch 1.98492 3.02637 1.98434
Blackman-Tukey 2.00499 6.7362 1.99956
Daniell 4.98134 6.33208 2.28147
Capon 2.2772 2.5221 2.2774
F-IAA 5.05359 4.11125 5.59216
ESPRIT 2.1139 2.4609 2.10688
MUSIC 2.11392 2.46089 2.11371

Table 5 for Data 1. Frame-by-frame, ENF extraction by employing
STFT with frame length L2 followed by quadratic interpolation
yields more accurate results with respect to both maximum corre-
lation coefficient and minimum standard deviation of error than
using L1. Welch and Blackman-Tukey methods yield the best re-
sults in the second harmonic, although periodogram-based methods
yield more accurate estimation in the first and third harmonics. The
F-IAA accuracy for the second harmonic is 0.9784 and generally
performs accurately although it employs a smaller frame length
(2 sec).

Table 5: Maximum correlation coefficient for various meth-
ods applied to Data 1 with frame length L2

Algorithm 60Hz 120Hz 180Hz
STFT 0.9916 0.992 0.9964
Welch 0.9964 0.992 0.9965
Blackman-Tukey 0.9933 0.992 0.9967
Daniell 0.9926 0.9915 0.9967
Capon 0.9945 0.9913 0.9948
ESPRIT 0.9953 0.9916 0.9953
MUSIC 0.9953 0.9917 0.9953

Next, we proceed to ENF estimation from Data 2. In the speech
recording, the first and third harmonics of the ENF are too weak
[15]. Accordingly, we confine ourselves to the second harmonic
(120Hz). Table 6 summarizes the findings for maximum correlation
coefficient. It is seen that Capon method yields the most accurate re-
sults. The maximum correlation coefficient reported here is greater
than 0.8446 reported in [15] for the same length L1. Using DTW,
the minimum cumulative distance between the aligned time se-
ries f and g is obtained when the MUSIC and ESPRIT methods
are employed. That is, DTW succeeds to align the extracted ENF
time series to the ground truth, when strong interferences do exist,
as is the case of Data 2. The same performance ordering of ENF
extraction methods is observed, when a longer frame length L2 is
employed. Periodogram-based methods are ranked top with respect
to the minimum standard deviation of error.

In Table 7, the computation time of various methods for ENF
extraction applied to Data 1 with frame length L1 is listed. The
Capon method is the most time consuming with 188 sec , while its
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(a) ENF estimation in US recording (b) ENF estimation in EU recording (c) ENF estimation in the mixed recording

Figure 1: ENF estimation in authentic and altered recordings.

Table 6: Maximum correlation coefficient for various meth-
ods applied to Data 2 for both frame lengths.

Algorithm 120Hz (L1) 120Hz (L2)
STFT 0.9179 0.9328
Welch 0.9179 0.9328
Blackman-Tukey 0.9179 0.9328
Daniell 0.9176 0.9311
Capon 0.9351 0.9458
F-IAA 0.9182 -
ESPRIT 0.9318 0.9444
MUSIC 0.9318 0.9444

fast implementation resorting to the Gohberg-Semencul factoriza-
tion of the inverse covariance matrix requires only 25 sec . STFT
requires the least time. Increasing frame length to L2, the order of
the most time-consuming algorithms remains the same as for L1.

Table 7: Computation time (in sec) of various ENF estima-
tion methods applied to Data 1 with frame length L1

Algorithm 60Hz 120Hz 180Hz
STFT 0.8836 0.9247 0.6713
Welch 7.8892 7.6732 7.4316
Blackman-Tukey 2.7167 2.5778 2.9981
Daniell 1.1282 1.9216 1.7166
Capon 188.2667 97.8226 97.2201
F-Capon 25.8116 6.5003 6.4371
ESPRIT 51.1890 51.7725 51.5155
MUSIC 51.0019 51.4458 51.4412

To assess the performance limits of the ENF estimation methods,
the various ENF estimation methods are applied to the 3rd dataset,
which comprises of the US recording, the EU recording, and the
mixed recording. The ENF in the US recording is expected to be
found in 60Hz, while the European one in 50Hz. The ENF embed-
ded in the mixed recording is expected to be found in 50Hz apart
from a 4 sec part, where ENF is expected to exhibit an abnormal
peak far from 50 Hz due to the alteration applied to the EU utter-
ance as explained in Section 2. ENF fluctuations ∆f ≥ 150mHz are

considered to be abnormal [10]. The Daniell method employing a
9.5 sec long frame length is found to be able to estimate correctly
the ENF in the authentic US and EU recordings and to detect the al-
teration occurred in the mixed recording as can be seen in Figure 1.
The vertical lines in Figure 1c indicate the starting and end time of
the alteration.

5 CONCLUSION AND FUTUREWORK
Digital audio authentication requires high accuracy in ENF ex-
traction in order to yield exact time/location estimation. Several
frequency estimation methods have been tested on a frame-based
approach by dividing the entire sequence into consecutive overlap-
ping frames. It has been demonstrated by experiments that if the
raw datasets are filtered by a properly designed band-pass filter, tak-
ing into account band-pass edges and filter order depending on the
nature of the recordings, then either non-parametric or parametric
techniques for spectral estimation provide an accurate estimation
of the ENF. Certain challenges emerge. The experiments with the
mixed recording have shown that the choice of the spectral estima-
tion method is not trivial. Interferences may hinder ENF estimation.
Exploiting the sparse nature of interferences in the formulation of
ENF estimation could be a topic of future research.
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