
Learning Bag-of-Features Pooling for Deep Convolutional Neural Networks

Nikolaos Passalis and Anastasios Tefas
Aristotle University of Thessaloniki

Thessaloniki, Greece
passalis@csd.auth.gr, tefas@aiia.csd.auth.gr

Abstract

Convolutional Neural Networks (CNNs) are well estab-
lished models capable of achieving state-of-the-art classi-
fication accuracy for various computer vision tasks. How-
ever, they are becoming increasingly larger, using millions
of parameters, while they are restricted to handling im-
ages of fixed size. In this paper, a quantization-based
approach, inspired from the well-known Bag-of-Features
model, is proposed to overcome these limitations. The pro-
posed approach, called Convolutional BoF (CBoF), uses
RBF neurons to quantize the information extracted from
the convolutional layers and it is able to natively classify
images of various sizes as well as to significantly reduce
the number of parameters in the network. In contrast to
other global pooling operators and CNN compression tech-
niques the proposed method utilizes a trainable pooling
layer that it is end-to-end differentiable, allowing the net-
work to be trained using regular back-propagation and to
achieve greater distribution shift invariance than compet-
itive methods. The ability of the proposed method to re-
duce the parameters of the network and increase the clas-
sification accuracy over other state-of-the-art techniques is
demonstrated using three image datasets.

1. Introduction
Deep Convolutional Neural Networks (CNNs) are pow-

erful well-known models used for various computer vi-
sion tasks, ranging from image classification [24], to vi-
sual question answering [18]. Their great success in dif-
ficult large-scale recognition problems, such as classifying
the images of the ImageNet dataset [24], established them
as the model of choice for the aforementioned tasks, dis-
placing other models that were previously used, such as the
Bag-of-Features (BoF) model, also known as the Bag-of-
Visual-Words (BoVW) model [12].

CNNs are composed of a feature extraction layer fol-
lowed by a fully connected layer that acts as a classifier.
The feature extraction layer is further composed of a se-

ries of convolutional layers and pooling layers. Many dif-
ferent combinations of convolution and pooling operators
have been proposed [8, 7, 13, 26]. The feature maps ex-
tracted from the last convolutional/pooling layer are flatten
into a vector which is subsequently fed to the fully con-
nected layer. Regardless the details of the used architecture,
all the CNNs share the same fundamental principle: the pa-
rameters of the feature extraction layer are not fixed, but
they are learned using back-propagation, just as any other
parameter of the network.

Despite their great success, most of the proposed CNN
formulations are unable to handle arbitrary sized images, as
they operate on a fixed input size, restricting the CNN into
accepting images of a specific size and leading to a constant
cost for feed-forwarding the network (the number of float-
ing point operations (FLOPs) needed to feed-forward the
network depends on the size of the input image). This is be-
cause the dimensionality of the (flattened) output of the fea-
ture extraction layer depends on the size of the input image.
Therefore, an already trained CNN cannot be directly de-
ployed in a lower computational resource scenario, i.e., an
embedded real-time system on a drone or a mobile device,
or adapt to the available computational resources, without
completely replacing the fully connected layer and retrain-
ing it. Furthermore, flattening the extracted feature maps
leads to tremendously large fully connected layers. For ex-
ample, for the VGG-16 network [26], 90% of the network’s
parameters are needed for just three fully connected layers,
while only 10% of the parameters are actually spent on its
13 convolutional layers used for the feature extraction. The
reason for this is the large number of the extracted feature
maps (512 feature maps of size 7x7).

There were some attempts to overcome the aforemen-
tioned limitations by using global pooling operators that
ensure that the output of the feature extraction layer has
fixed length [7, 21]. Even though these global pooling op-
erators can be used to provide scale invariance and allow
the network to operate with arbitrary sized images, it was
experimentally established (Section 4) that the accuracy of
the network is reduced when the input image size is altered.

This is because the scale invariance is not provided by learn-
ing a scale-invariant pooling layer, but by learning scale-
invariant filters that are then pooled together. However, as
it is demonstrated in this work, learning both the pooling
layer and the convolutional layers can provide significantly
better scale-invariance, while reducing the size of the re-
sulting network. Note that compression techniques, such
as [5, 6, 29], can be also used to reduce the size of CNNs,
however they are not capable of dealing with arbitrary sized
images.

In this work, a BoF-inspired layer, that acts as a trainable
quantization-based pooling layer, is used between the fea-
ture extraction layer and the fully connected layer to resolve
these problems. It worths mentioning that the BoF model
was originally designed to tackle similar problems, i.e., to
deal with a variable number of feature vectors and provide
scale and position invariance, that arose when handcrafted
feature extractors were used. To understand this, consider
the pipeline of the BoF model: First, a number of feature
vectors are extracted from an image using a handcrafted fea-
ture extractor, such as SIFT [17], HoG [4], or LBP [20]. The
number of feature vectors might vary according to the type
of feature extraction and the size of each image. Then, these
feature vectors are quantized into a predefined number of
bins, called codewords. Finally, a constant length histogram
representation is extracted for each image by counting the
number of feature vectors that were quantized into each bin.

The feature maps extracted from the last convolutional
layer of a CNN can be converted to feature vectors as fol-
lows. Each convolutional filter contributes to a specific po-
sition of the feature vectors, i.e., the dimensionality of the
extracted feature vectors equals to the number of the used
convolutional filters, while the size of the feature maps de-
fines the number of the extracted feature vectors. Instead
of directly feeding the extracted vectors into the fully con-
nected layer, a BoF-based pooling layer is used between the
last convolutional layer and the fully connected layer. This
can reduce the size of the fully connected layer and allows
to operate the CNN using images of any size. However,
combining the BoF model with CNNs is not a straightfor-
ward task. The representation learned by the convolutional
layers of a CNN is constantly altering during the training
prohibiting standard BoF quantization techniques, such as
k-means quantization, to be used effectively. Therefore, the
BoF model must be appropriately modified in order to effi-
ciently handle trainable convolutional feature extractors.

The contributions of this work are briefly summarized
bellow. First, a neural generalization of the BoF model,
composed of RBF neurons, is proposed as a generic pool-
ing layer that can fit between the feature extraction layer and
the fully connected layer of a CNN. Note that the proposed
pooling layer can be also used at various depths of the net-
work to further increase the scale-invariace and bring more

fine-grained information to the fully connected layer. To
the best of our knowledge, this is the first time that the BoF
model is combined with convolutional neural networks into
one unified architecture, called Convolutional BoF (CBoF),
that is end-to-end differentiable and allows from training
the resulting network using regular back-propagation. It is
shown, using extensive experiments on three datasets, that
CBoF provides much better invariance to distribution shifts,
caused by feeding images of different sizes to the network
than competitive global pooling strategies, such as Spatial
Pyramid Pooling [7]. Also it can greatly reduce the number
of parameter of the network over the competitive methods.
This allows the proposed technique to be easily used with
embedded devices with limited processing power and mem-
ory, e.g., GPU-based processing units for drones and robots.
Finally, a spatial segmentation scheme is also proposed and
combined with the CBoF to retain the spatial information
that is carried by the extracted feature vectors. A refer-
ence implementation of the proposed method is available
at https://github.com/passalis/cbof.

The rest of the paper is structured as follows. In Sec-
tion 2 the related work is introduced and compared to the
proposed CBoF model. The proposed method is presented
in detail in Section 3. Next, the CBoF is evaluated and com-
pared to other state-of-the-art techniques using three differ-
ent datasets (Section 4), including a large-scale face image
dataset. Finally, conclusions are drawn in Section 5.

2. Related Work
The problem of dealing with large CNNs is well recog-

nized in the literature, with several recent works trying to
reduce the model size [5, 6, 7, 29]. Most of these works use
compression and pruning techniques to reduce the size of
CNN models [1, 5, 6, 29]. These approaches focus on com-
pressing an already trained CNN, instead of training a CNN
with less parameters in the first place. Also they are un-
able to natively handle images of various sizes, leading to
a constant cost for feed-forwarding the convolutional lay-
ers (since the image must be resized to a predefined size).
Note that vector quantization is used both by some of these
works [5, 29], and the proposed CBoF technique. How-
ever, the CBoF method uses a differentiable quantization
scheme that allows training both the quantizer and the rest
of the network simultaneously, instead of using fixed quan-
tization just to reduce the size of the model. This allows
for directly training CNN models with less parameters (in-
stead of compressing them after training) as well as natively
handling differently sized images. Note that the proposed
CBoF model can be readily combined with any CNN com-
pression technique to further decrease the size of the model.

The problem of dealing with arbitrary sized images is
addressed in the literature using global pooling operators
[7, 21, 19]. Since the naive global max pooling [21], leads

https://github.com/passalis/cbof

Figure 1. Convolutional BoF Model

to the loss of valuable spatial information, spatial pooling
techniques [19, 7], were proposed to overcome this issue.
Both the global pooling techniques and the proposed CBoF
technique reduce the size of network and they can handle
images of different sizes. However, as we show in Sec-
tion 4, the proposed method greatly outperforms all the
other global pooling methods, achieving both higher recog-
nition accuracy and using overall less parameters. This can
be attributed to the ability of the proposed method to learn
how to perform quantization-based pooling, that allows for
efficiently compressing the output of the feature extraction
layer and providing much better invariance to distribution
shifts caused by feeding differently sized images to the net-
work.

Finally, the proposed method is related to supervised
dictionary learning approaches for the BoF representation.
A very rich literature exists for BoF supervised dictionary
learning [11, 15, 16, 23]. However, all these methods are de-
signed to work with handcrafted feature extractors instead
of trainable convolutional layers. To the best of our knowl-
edge, this is the first work that combines the BoF model
with convolutional layers into one unified architecture that
allows for training the resulting network from scratch by
back-propagating the error from the fully connected layer
to the convolutional feature extractor.

3. Proposed Method

The proposed Convolutional BoF model is composed of
three layer blocks: a) a feature extraction layer block (com-
posed of many convolutional and pooling layers), b) a BoF
pooling layer block and c) a fully connected layer block.
The structure of the CBoF model is illustrated in Figure 1.
Each of the layers used in the CBoF is described in detail
in the next subsections. Next, a learning algorithm for the
CBoF model is derived and its computational complexity is
discussed and compared to other methods.

3.1. Feature Extraction Layer Block

Let X be a set of N images to be classified using the
CBoF model. The i-th image is fed to the feature extrac-
tion layer, which is composed of a sequence of convolu-
tional layers and subsampling (pooling) layers. Any CNN
architecture can be used as feature extractor, such as the
LeNet [13], the VGG [26], or the ResNet [8], after remov-
ing its fully connected layers.

The last convolutional layer, denoted by L, is used to
extract feature vectors that are subsequently fed to the BoF
layer. The j-th feature vector of the i-th image is denoted by
xij ∈ RD, where D is the number of filters used in the last
convolutional layer. The number of the extracted feature
vectors depends on the size of the feature map and the used
filter size, as described in the Introduction. For example, for
an image of 28x28 pixels and two convolutional layers with
filter size 5x5 a total of 20×20 = 400 feature vectors can be
extracted from the final convolutional layer (assuming that
the filters fully overlap with the image). To simplify the
presentation of the proposed method, the number of feature
vectors extracted from the last convolutional layer for the
i-th image is denoted by Ni.

3.2. BoF Layer Block

After the feature extraction the i-th image is represented
by a set of Ni feature vectors: xij ∈ RD (j = 1...Ni). In-
stead of simply fusing the extracted feature vectors, like the
CNNs [8, 13, 24, 26], or using a spatial pooling approach,
like the SPP [7], the BoF layer compiles a fixed-length his-
togram for each image by quantizing its feature vectors into
a predefined number of histogram bins/codewords. Note
that the length of the extracted histogram vector does not
depend on the number of available feature vectors, which
allows the network to handle images of arbitrary size with-
out any modification.

The BoF model is formulated as a generic neural layer
that is composed of two sublayers: an RBF layer that mea-
sures the similarity of the input features to the RBF cen-
ters and an accumulation layer that builds the histogram of

the quantized feature vectors. The proposed layer can be
thought as a unified processing layer that feeds the extracted
representation to a subsequent classifier. The output of the
k-th RBF neuron [φ(x)]k is defined as:

[φ(x)]k = exp(−||(x− vk)||2/σk) (1)

where x is a feature vector and vk is the center of the k-th
RBF neuron. The RBF neurons behave somewhat like the
codewords in the BoF model, i.e., they are used to measure
the similarity of the input vectors to a set of predefined vec-
tors and quantize the feature space. Each RBF neuron is
also equipped with a scaling factor σk that adjusts the width
of its Gaussian function. That allows for better modeling
of the input distribution, since the distribution modeled by
each RBF can be independently learned. The number of
RBF neurons used is denoted by NK . The size of the ex-
tracted representation can be adjusted by using a different
number of RBF neurons (NK) in the BoF layer.

To ensure that the output of each RBF neuron is bounded,
a normalized RBF architecture is used. This normalization
is equivalent to the l1 scaling that is utilized in the BoF
model that uses soft-assignments [28]. Thus, the output of
the RBF neurons is re-defined as:

[φ(x)]k =
exp(−||(x− vk)||2/σk)∑NK

m=1 exp(−||(x− vm)||2/σm)
(2)

The output of the RBF neurons is accumulated in the
next layer, compiling the final representation of each image:

si =
1

Ni

Ni∑
j=1

φ(xij) (3)

where φ(x, t) = ([φ(x, t)]1, ..., [φ(x, t)]NK
)T ∈ RNK is

the output vector of the RBF layer. Note that each si has
unit l1 norm and defines a histogram distribution over the
RBF neurons that describes the visual content of each im-
age. The vector si can be then used for the subsequent
classification or retrieval tasks [22]. Hard quantization is
also supported by the proposed formulation. In this case,
only the RBF neuron with the maximum response is acti-
vated for each feature vector and the rest of the architec-
ture remains unchanged. However, this modification intro-
duces non-continuities that make the optimization of the in-
put layer intractable and it is not used in this work.

Note that the previous process discards most of the spa-
tial information carried by the feature vectors, since all the
feature vectors are described by the same histogram regard-
less the part of the image from which they were extracted.
To overcome this, a spatial segmentation scheme, similar
to the Spatial Pyramid Matching scheme [12], is proposed.
Before quantizing the feature vectors using the BoF layer,
each feature vector is assigned into one spatial region and

Spatial Level 0 Spatial Level 1

Figure 2. Using a spatial segmentation scheme to introduce spatial
information into the extracted CBoF representation.

a separate BoF layer is used to quantize the feature vectors
that belong to each region. That way, a different histogram
is extracted from each region, allowing to introduce more
spatial information into the CBoF model. This process is
illustrated in Figure 2. The number of used spatial regions
is denoted by NS .

3.3. Fully Connected Layer

The previous layer receives the feature vectors of an im-
age and compiles its histogram representation. Then, this
histogram must be fed to a classifier that decides the class
of the image. In this work a multilayer perceptron (MLP)
with one hidden layer is used for this purpose, although any
other classifier with differentiable loss function can be used.

Only the single-label classification problem is consid-
ered: the i-th training image is annotated by a label ti and
there are NC different labels. This is without loss of gen-
erality since the proposed method can be readily applied to
multi-label classification or regression problems as well.

Let WH ∈ RNH×(NKNS) be the hidden layer weights
and WO ∈ RNC×NH be the output layer weights, where
NH is the number of hidden neurons. Then, the hidden
layer activations for the input histogram si of the i-th image
are computed as:

hi = φ(elu)(WHsi + bH) ∈ RNH (4)

where φ(elu)(x) is the elu activation function [3]:
φ(elu)(x) = x if x > 0, or φ(elu)(x) = αelu(exp(x) − 1)
otherwise. The parameter αelu is typically set to 1. The ac-
tivation function is applied element-wise and bH ∈ RNH is
the hidden layer bias vector.

Similarly, the output of the MLP is calculated as:

yi = φ(softmax)(WOhi + bO) ∈ RNC (5)

where each output neuron corresponds to a label (the one-
vs-all strategy is used), bO ∈ RNC is the output layer bias
vector and φ(softmax) is the softmax activation function.

In this work, the categorical cross entropy loss is used
for training the network:

L = −
N∑
i=1

NC∑
j=1

[ti]j log([yi]j) (6)

where ti ∈ RNC is the target output vector, which depends
on the label (ti) of the input image and it is defined as:
[ti]j = 1, if j = ti, or [ti]j = 0, otherwise. For both
the input layer and the hidden layer the dropout technique
can be used [27]. Dropout with rate p = 0.5 is used, except
otherwise stated.

3.4. Learning with the CBoF

All the layers of the CBoF network can
be trained using back-propagation and gra-
dient descent: ∆(WMLP ,V,σ,Wconv) =
−(ηMLP

∂L
∂WMLP

, ηV
∂L
∂V , ησ

∂L
∂σ , ηconv

∂L
∂Wconv

), where the
notation WMLP and WConv is used to refer to the param-
eters of the classification layer and the feature extraction
layer respectively. Instead of using simple gradient descent,
a recently proposed method for stochastic optimization,
the Adam (Adaptive Moment Estimation) algorithm [9], is
utilized for learning the parameters of the network.

The convolutional layers can be either learned from
scratch or finetuned, when a pretrained feature extractor is
used. The hidden weights of the MLP are initialized us-
ing random orthogonal initialization [25]. The centers of
the RBF neurons can be either randomly chosen or initial-
ized using the k-means algorithm over the set of all feature
vectors S = {xij |i = 1...N, j = 1...Ni}. In this work,
the set S is clustered into NK clusters and the correspond-
ing centroids (codewords) vk ∈ RD(k = 1...NK) are used
to initialize the centers of the RBF neurons. The same ap-
proach is used in the BoF model to learn the codebook that
is used to quantize the feature vectors. However, in contrast
to the BoF model, the CBoF model uses this process only to
initialize the centers. Both the RBF centers and the scaling
factors (initially set to 0.1) are learned.

3.5. Computational Complexity Analysis

The asymptotic storage requirements for the network and
the cost for the feed-forward process are derived in this Sec-
tion. Note that these quantities are calculated for the part
of the network after the last convolutional layer (assuming
that NF convolutional filters are used in the last convolu-
tional layer, the size of each feature map/number of feature
vectors is Ni and two fully connected layers are used). The
proposed method is also compared to a regular CNN as well
as to the SPP technique. For both the CBoF and the SPP
techniques the number of used spatial regions is denoted by
NS .

The CNN method requires O(NiNFNH + NHNC)
weights after the last convolutional layer, the SPP method
requires O(NSNFNH + NHNC) weights, while the pro-
posed CBoF method requiresO(NSNKNF +NSNKNH+
NHNC) weights. Note that the CBoF method is capa-
ble of decoupling the input feature dimensionality NF
from the network architecture, allowing to use signif-

icantly smaller networks The cost of feed forwarding
the network is O(NiNFNH + NHNC) for the CNN,
O(NiNF +NSNFNH +NHNC) for the SPP method and
O(NiNKNF+NSNKNH+NHNC) for the CBoF method.
Both the SPP and the CBoF methods carry an extra cost
for the feature aggregation/quantization step (O(NiNF)
and O(NiNKNF) respectively), but in practice this cost
is amortized by the smaller number of operations that are
needed after this step (it is reasonable to assume that NK <
NH , as in the conducted experiments). Also, note that since
Ni is dependent on the input image size, the cost of the feed
forward process can be adjusted for the SPP and the CBoF
methods by simply resizing the input image.

4. Experiments
Three different datasets were used to evaluate the pro-

posed method: the MNIST database of handwritten dig-
its (MNIST) [14], the fifteen natural scene (15-scene)
dataset [12], and the large-scale Annotated Facial Land-
marks in the Wild (AFLW) dataset [10].

The MNIST database [14], is a well-known dataset that
contains 60,000 training images and 10,000 testing images
of handwritten digits. The training set was split into 50,000
training images and 10,000 validation images that were
used to evaluate the learned models and prevent overfitting.
There are 10 different classes, one for each digit (0 to 9),
and the size of each image is 28 × 28.

The 15-scene dataset [12], consists of images belong-
ing to fifteen different natural scene categories, such as in-
dustrial, forest, city, bedroom and living room scenes. The
dataset has a total of 4,485 images, with an average size of
300 × 250 pixels, and the number of images in each cat-
egory ranges from 200 to 400 images. Since there is no
predefined train/test split, the standard evaluation protocol
is used [12]: the train split is composed of 1,500 randomly
chosen images (100 from each category), the test split is
composed of the remaining 2985 images and the evaluation
process is repeated 5 times.

The Annotated Facial Landmarks in the Wild (AFLW)
dataset [10], is a large-scale dataset for facial landmark lo-
calization. The AFLW dataset was used to evaluate the per-
formance of the proposed method for the problem of facial
pose estimation using a light-weight model that can be de-
ployed on embedded devices, such as drones that will as-
sist the video shooting of sport events. Estimating the fa-
cial pose of the actors allows for calculating the appropriate
shooting angle according to the specifications of each shot.
The 75% of the images were used to train the models, while
the rest 25% for evaluating the accuracy of the models. The
face images were cropped according to the given annotation
and face images smaller than 16x16 pixels were not used for
training or evaluating the model.

In this work, three different feature extraction blocks are

utilized to demonstrate the flexibility of the CBoF. For the
first one, the Feature Extraction Layer Block A, 32 5 × 5
convolutional filters are used in the first layer, followed by
a 2×2 max layer and 64 5×5 convolutional filters in the last
layer. The Feature Extraction Layer Block B is deeper and
it is composed of two layers with 64 3×3 convolutional fil-
ters, a layer with 128 3x3 convolutional filters, a 2×2 max-
pooling layer followed by another two 256 3x3 convolu-
tional layers, a 512 3x3 convolutional layer and a 2×2 max
pooling layer. These blocks are learned from scratch. For
the Feature Extraction Layer Block C a pretrained convolu-
tional network with 5 convolutional layers is used [31]. This
block was pretrained on the Places205 dataset and the fea-
ture vectors are extracted from its last convolutional layer
(256 feature maps). Different learning rates must be used
for each layer, depending on whether the network is learned
from scratch or being finetuned. For the first two setups
(learning from scratch) the same learning rate is used for
all the layers ηMLP = ηV = ησ = ηconv = 10−4. For the
third setup different learning rates are used, since the feature
extraction layer is already trained,: ηMLP = ησ = 10−4,
ηconv = 10−5 and ηV = 10−2.

4.1. MNIST Evaluation

The well known MNIST dataset is used to study the
behavior of the proposed method under different settings.
First, the effect of the number of RBF neurons (codewords)
is examined in Figure 3 using two different spatial levels,
spatial level 0 (NS = 1) and spatial level 1 (NS = 4) (as
shown in Figure 2). The network is learned from scratch
(feature extraction layer block A). All the layers of the
network are trained using back-propagation for 50 epochs.
When no spatial segmentation is used (spatial level 0), us-
ing more RBF neurons reduces the classification error lead-
ing to 0.74% error when 128 neurons are used. Using spa-
tial segmentation at level 1 further reduces the error to 0.61
when 4× 32 = 128 codewords are used. It worths noticing
that “bottlenecking” the network into just 8 RBF neurons
after the convolutional layer, which is less than the classes
of the problem, achieves a remarkable classification error of
just 1.13% (similar to a LeNet-4 [13], which fully flattens
the feature maps).

Next, the ability of CBoF to learn and classify images
of various sizes is examined in Table 1 (32 RBF neurons
and spatial level 0 are used). The CBoF is evaluated using
images of 20×20, 24×24, 28×28, 32×32 and 36×36 pix-
els. These images were generated by resizing the original
MNIST images (using spline interpolation). Three different
training setups are considered: Train A, where only 28x28
images are used for training, Train B, where 24×24, 28×28
and 32×32 images are used for training, and Train C, where
all the available image sizes are used for training. When the
size of an image to be classified is close to the image size

8 16 32 64 128
RBF neurons

0.6

0.7

0.8

0.9

1.0

1.1

1.2

cl
as
si
fic
at
io
n
er
ro
r
(%

)

1.13

0.91
0.88

0.85

0.740.73
0.75

0.61 0.61 0.64

Spatial Level 0
Spatial Level 1

Figure 3. MNIST: Comparing test error of CBoF for different
number of codewords and spatial levels.

0 1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

Digit 6, Size: 24

0 1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5
Digit 6, Size: 28

0 1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5
Digit 6, Size: 32

Figure 4. MNIST: Visualizing the RBF activations for different
image sizes (without training for different image sizes).

Image Size 20 24 28 32 36
Train A 19.69 1.92 0.88 4.10 25.39
Train B 3.68 0.91 0.73 1.11 2.49
Train C 1.44 0.82 0.68 0.95 1.60

Table 1. MNIST: CBoF error (%) for different image sizes and
train setups: Train A (28x28 images), Train B (24 × 24, 28 × 28
and 32× 32 images) and Train C (all the available image sizes).

used for training, i.e., ±4 pixels or ±14% of training im-
age size, the impact on classification accuracy is relatively
small. The scale-invariance of the model is significantly
improved when it is trained using images of different sizes
(Train B and Train C setups), as shown in Table 1. Also, the
multiple size training process leads to better overall accu-
racy, since the classification error is reduced to 0.68% from
0.88% (for the given setup).

The RBF neurons provide a Voronoi-like segmentation
of the space where they operate, i.e., the space of the con-
volutional feature vectors. This makes the proposed tech-
nique relatively invariant to mild distribution shifts. This
phenomenon is illustrated in Figure 4, where the activa-
tions of the RBF neurons are shown when images of dif-
ferent sizes are fed to the network (which is trained only for
28x28 images). Even though the actual input distribution is
shifted, relatively mild shifts are observed in the activation
of the RBF neurons (especially for the smaller image).

Finally, in Table 2 the CBoF method (spatial level 1
(NS = 1), 32 RBF neurons) is compared to other state-

of-the art techniques for image classification. For the
CNN method the same convolutional layers as in the CBoF
method are used, combined with a 2 × 2 pooling layer
(dropout with p = 0.5 is also used) before the fully con-
nected layer (1000 × 10). For the Global Max Polling
(GMP)/SPP the global pooling/spatial pooling layer is con-
nected after the last convolutional layer. One spatial level
is used for the SPP technique. For the GMP, SPP and the
CBoF techniques the models were trained using digit im-
ages of 20 × 20, 24 × 24, 28 × 28, 32 × 32 and 36 × 36
pixels. The classification error for images of two sizes are
reported: for the default image size (28× 28 pixels) and for
a reduced image size (20 × 20 pixels). The number of pa-
rameters used in the layers after the feature extraction layer,
which is common among all the evaluated networks, is also
reported. All the layers of the networks are learned during
the training.

The proposed CBoF outperforms both the CNN and the
GMP/SPP techniques, while using significantly less param-
eters after the convolutional layers (about one order of mag-
nitude less parameters than a similarly performing CNN).
Also, it provides much better scale-invariance than the com-
petitive GMP/SPP techniques, even though both techniques
were trained using 5 different image sizes. Note that the
purpose of the conducted experiments was not to achieve
state-of-the-art performance on the MNIST dataset, but to
examine the behavior of the proposed method under differ-
ent training scenarios. Nonetheless, the proposed method
achieves performance close to other much more compli-
cated techniques, such as ensembles of neural networks
trained using various distortions of the images [2]. These
methods can be combined with the proposed approach and
possibly increase the classification accuracy even more,
while reducing the overall network size. Also, to demon-
strate that the actual architecture of the BoF layer con-
tributes to the improved results, the GMP and SPP networks
were also evaluated with an added 1×1 convolutional layer
with 64 filters. Again, the proposed CBoF method outper-
forms both the GMP and SPP methods (3.52% classifica-
tion error for the GMP and 1.66% for the SPP method (for
20x20 images)).

4.2. 15-scene Evaluation

First, the performance of the CBoF is evaluated for dif-
ferent codebook sizes and spatial levels. Instead of using
randomly initialized convolutional layers, a pretrained CNN
is used (feature extraction layer block C) [31]. The net-
work was trained for 100 epochs. Also, the fully connected
layers were pre-trained for 10 epochs before training the
whole network to avoid back-propagating gradients from
randomly initialized layers. Figure 5 illustrates the preci-
sion on the test set for different number of codewords (eval-
uated on one test split). As before, using more codewords

Method Cl.Err. (28) Cl.Err. (20) # Param.
CNN 0.56 (0.78)* 1,035k
GMP 0.62 3.22 75k
SPP 0.52 1.78 331k
CBoF(0, 32) 0.68 1.44 45k
CBoF(1, 32) 0.55 0.94 147k
CBoF(1, 64) 0.51 0.83 284k

Table 2. MNIST: Comparing CBoF to other state-of-the-art tech-
niques. The spatial level and the number of RBF neurons are
reported in the parenthesis for the CBoF model. (*Training from
scratch for 20× 20 images)

8 16 32 64 128 256
RBF neurons

75

80

85

90

95

cl
as
si
fic
at
io
n
ac
cu
ra
cy

(%
)

80.51

85.94

87.82

89.51 89.75
91.05

84.37

87.72 88.02

88.40
89.39 89.53

Spatial Level 0
Spatial Level 1

Figure 5. 15-scene: Comparing test accuracy of CBoF for different
number of codewords and spatial levels

leads to better classification accuracy when no spatial seg-
mentation is used. Unlike the MNIST dataset, using spatial
segmentation does not improve the overall classification ac-
curacy for the 15-scene dataset. This is happening possibly
due to the nature of the dataset (the spatial information is
less important when recognizing natural scenes than when
detecting the edges of aligned digits) and the larger recep-
tive field of the final convolutional filters.

Then, the CBoF model is trained using images of differ-
ent sizes (one dataset split is used for the evaluation). The
results are shown in Table 3. Again, training with differ-
ent image sizes helps to improve the classification accuracy
for any image size. Note that the classification accuracy in-
creases from 90.66% to 92.38%, when multiple image sizes
are used for training, highlighting the importance of training
the network using different image sizes.

Finally, the CBoF (256 RBF neurons, no spatial seg-
mentation) is compared to other state-of-the-art techniques
in Table 4. All the evaluated method share the same fea-
ture extraction layer. For the CNN, a 1000 × 15 fully con-
nected layer is added after the last pooling layer, while the
GMP/SPP layer is added between the last convolutional and
the fully connected layers Note that the fully connected
layer of the pretrained network is not used [31], leading
to slightly different reported results for the CNN method.

Im. Size 179 203 227 251 275
Train A 88.01 90.42 90.66 90.32 88.82
Train B 89.66 91.61 92.01 91.45 90.03
Train C 90.44 92.05 92.38 91.64 90.39

Table 3. 15-scene: CBoF accuracy (%) for different image sizes
and train setups: Train A (227×227 images), Train B (203×203,
227 × 227 and 251 × 251 images) and Train C (all the available
image sizes).

Method Acc. (227) Acc. (179) # Param.
CNN 88.79± 0.62 (87.90± 1.14*) 9,232k
GMP 86.74± 0.40 84.62± 0.32 272k
SPP 89.94± 0.73 87.70± 0.46 1,296k
CBoF
(0, 256)

91.38± 0.63 89.86± 0.80 337k

Table 4. 15-scene: Comparing CBoF to other state-of-the-art tech-
niques (*Training from scratch for 179× 179 images)

Instead, all the layers of the network are learned during
the training procedure using back-propagation. The follow-
ing learning rares were used for the CNN, GMP, and SPP
methods: ηconv = 10−3 and ηconv = 10−5. Again, the
proposed CBoF method outperforms both the CNN and the
GMP/SPP techniques while using significantly less param-
eters. The same is also true when smaller images are fed
to network. The GMP/SPP techniques were also evaluated
with one added 1 × 1 convolutional layer (86.32% for the
GMP, 89.55% for the SPP, 256 1×1 filters were used). The
proposed CBoF method still outperforms there techniques,
even though one extra layer was added.

4.3. AFLW Evaluation

Finally, the proposed method is evaluated on AFLW
dataset. The Feature Extraction Layer Block B was used
for these experiments and a hidden layer with 1000 × 1
neurons was utilized. The models were trained for 5000
iterations, while the CBoF and the GMP/SPP methods were
trained using three image sizes, i.e., 32 × 32, 64 × 64, and
96 × 96 pixels (for each iteration batches from each size
were fed to each network). No dropout was used after the
feature extraction layer block for the GMP, SPP and CBoF
methods, since it was established that slows down the train-
ing process significantly. All the networks were trained to
perform regression on the horizontal facial pose (yaw) us-
ing the mean squared error as the objective function for the
training procedure. The experimental results are shown in
Table 5. The mean absolute angular error (Ang. Err.) in
degrees is reported. As in the previous experiments, the
proposed method significantly reduces the size of the mod-
els, while still increasing the accuracy of the yaw angle es-
timation. Note that even though the CBoF (0, 128) and the

Method Ang. Err. (64) Ang. Err. (32) # Param.
CNN 14.50 (13.91*) 61,954k
GMP 13.70 12.83 514k
SPP 12.37 11.96 2,562k
CBoF
(0, 128)

16.23 13.84 196k

CBoF
(1, 32)

11.92 11.25 196k

Table 5. AFLW: Comparing CBoF to other state-of-the-art tech-
niques (the mean absolute angular error in degrees is reported)
(*Training from scratch for 32× 32 images)

CBoF (1, 32) use the same number of parameters, the spa-
tial segmentation scheme used in CBoF (1, 32) significantly
increases the accuracy since the spatial information is espe-
cially important for the task of facial pose estimation.

5. Conclusions

In this paper, a neural extension of the well-known BoF
model was combined with convolutional neural networks to
form powerful image recognition machines. It was demon-
strated, using three image datasets, that the proposed CBoF
model is able to natively classify images of various sizes
as well as to significantly reduce the number of parame-
ters in the network, while achieving remarkable classifica-
tion accuracy. In contrast to CNN compression techniques,
that simply compress an already trained CNN, the proposed
method provides an improved CNN architecture that is end-
to-end differentiable and it is invariant to mild distribution
shifts. Nonetheless, the proposed technique can be com-
bined with CNN compression techniques, such as [5, 6, 29],
to further reduce the size of the resulting network. Further-
more, the proposed RBF-based quantization scheme can
be approximated using only linear layers instead of RBF-
layers increasing the classification speed even more. Pre-
liminary experiments show that this approach can indeed
increase both the training and the testing speed, without
significantly harming the accuracy of the models. The pro-
posed pooling layer can be further enhanced by also learn-
ing the spatial regions over which the pooling is performed,
similarly to [19], or using visual attention mechanisms [30].

Acknowledgment

This project has received funding from the European
Unions Horizon 2020 research and innovation programme
under grant agreement No 731667 (MULTIDRONE). This
publication reflects the authors’ views only. The European
Commission is not responsible for any use that may be
made of the information it contains.

References
[1] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and

Y. Chen. Compressing convolutional neural networks. arXiv
preprint arXiv:1506.04449, 2015.

[2] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column
deep neural networks for image classification. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3642–3649, 2012.

[3] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and
accurate deep network learning by exponential linear units
(elus). arXiv preprint arXiv:1511.07289, 2015.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, volume 1, pages
886–893, 2005.

[5] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compress-
ing deep convolutional networks using vector quantization.
arXiv preprint arXiv:1412.6115, 2014.

[6] S. Han, H. Mao, and W. J. Dally. A deep neural network
compression pipeline: Pruning, quantization, huffman en-
coding. arXiv preprint arXiv:1510.00149, 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pool-
ing in deep convolutional networks for visual recognition. In
Proceedings of the European Conference on Computer Vi-
sion, pages 346–361, 2014.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015.

[9] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[10] M. Koestinger, P. Wohlhart, P. M. Roth, and H. Bischof. An-
notated facial landmarks in the wild: A large-scale, real-
world database for facial landmark localization. In First
IEEE International Workshop on Benchmarking Facial Im-
age Analysis Technologies, 2011.

[11] S. Lazebnik and M. Raginsky. Supervised learning of quan-
tizer codebooks by information loss minimization. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
31(7):1294–1309, 2009.

[12] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, pages
2169–2178, 2006.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[14] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database
of handwritten digits, 1998.

[15] X.-C. Lian, Z. Li, B.-L. Lu, and L. Zhang. Max-margin dic-
tionary learning for multiclass image categorization. In Pro-
ceedings of the European Conference on Computer Vision,
pages 157–170. 2010.

[16] H. Lobel, R. Vidal, D. Mery, and A. Soto. Joint dictionary
and classifier learning for categorization of images using a
max-margin framework. In Image and Video Technology,
pages 87–98. 2014.

[17] D. G. Lowe. Object recognition from local scale-invariant
features. In Proceedings of the IEEE International Confer-
ence on Computer vision, volume 2, pages 1150–1157, 1999.

[18] L. Ma, Z. Lu, and H. Li. Learning to answer questions from
image using convolutional neural network. arXiv preprint
arXiv:1506.00333, 2015.

[19] M. Malinowski and M. Fritz. Learnable pooling regions for
image classification. In International Conference on Learn-
ing Representations Workshop, 2013.

[20] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution
gray-scale and rotation invariant texture classification with
local binary patterns. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(7):971–987, 2002.

[21] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and
transferring mid-level image representations using convolu-
tional neural networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1717–1724, 2014.

[22] N. Passalis and A. Tefas. Entropy optimized feature-
based bag-of-words representation for information retrieval.
IEEE Transactions on Knowledge and Data Engineering,
28(7):1664–1677, 2016.

[23] N. Passalis and A. Tefas. Neural bag-of-features learning.
Pattern Recognition, 64:277–294, 2017.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015.

[25] A. M. Saxe, J. L. Mcclelland, and S. Ganguli. Exact so-
lutions to the nonlinear dynamics of learning in deep linear
neural network. In International Conference on Learning
Representations, 2014.

[26] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[27] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[28] J. C. Van Gemert, C. J. Veenman, A. W. Smeulders, and J.-
M. Geusebroek. Visual word ambiguity. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 32(7):1271–
1283, 2010.

[29] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized
convolutional neural networks for mobile devices. arXiv
preprint arXiv:1512.06473, 2015.

[30] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudi-
nov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In Interna-
tional Conference on Machine Learning, pages 2048–2057,
2015.

[31] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.
Learning deep features for scene recognition using places
database. In Proceedings of the Advances in Neural Infor-
mation Processing Systems, pages 487–495, 2014.

