
Discriminatively Trained Autoencoders for Fast
and Accurate Face Recognition

Paraskevi Nousi and Anastasios Tefas

Department of Informatics, Aristotle University of Thessaloniki
paranous@csd.auth.gr, tefas@aiia.csd.auth.gr

Abstract. Accurate face recognition is vital in person identification
tasks and may serve as an auxiliary tool to opportunistic video shoot-
ing using Unmanned Aerial Vehicles (UAVs). However, face recognition
methods often require complex Machine Learning algorithms to be ef-
fective, making them inefficient for direct utilization in UAVs and other
machines with low computational resources. In this paper, we propose
a method of training Autoencoders (AEs) where the low-dimensional
representation is learned in a way such that the various classes are more
easily discriminated. Results on the ORL and Yale datasets indicate that
the proposed AEs are capable of producing low-dimensional representa-
tions with enough discriminative ability such that the face recognition
accuracy achieved by simple, lightweight classifiers surpasses even that
achieved by more complex models.
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1 Introduction

Face recognition is an important task in Machine Learning, and is vital in the
problem of person identification as a person’s facial image constitutes his/her
most prominent biometric features [6]. Correctly identifying a person given a
facial image may, for example, facilitate the task of automatic video capturing
using Unmanned Aerial Vehicles. In such a scenario, after faces have been de-
tected in the video stream provided by the UAV, the faces may be analyzed by a
face recognition framework so as to identify persons of interest, e.g., important
athletes in sports competitions. After correct identification has been established,
the UAV may then use tracking algorithms to track a person, thus aiding the
capture of opportunistic shots of this nature.

As face recognition is a very popular problem, many algorithms have been
proposed for its solution over the past years. Autoencoders, in particular, have
emerged as tools useful to this task and many variants have been proposed
in literature, yielding impressive results. Typically, such methods on the one
hand produce low-dimensional representations, lowering subsequent computa-
tional costs, but on the other hand, further analysis of the low-dimensional rep-
resentations by computationally expensive classifiers is required, as lightweight



classifiers may not possess enough discriminative ability to produce accurate
predictions. However, deploying such methods on UAVs, which are afflicted by
limited computational capabilities, is inefficient. Intuitively, if the data represen-
tation obtained by an AE contains enough discriminative ability itself, even a
simple, lightweight classifier should yield significant recognition accuracy.

This is the main intuition behind this work: we seek to incorporate label
information into the training process of an AE, for the purpose of dimension-
ality reduction in conjunction with producing discriminative features so as to
facilitate even lightweight classifiers. The representations produced by such an
AE should be discriminative enough, such that a very simple classifier should be
able to differentiate well between samples of different classes and a more complex
classifier may be trained faster and more effectively. Furthermore, the compres-
sion of the data dimensionality reduces the computational costs imposed on the
classifiers.

The main contribution of this work is the proposal of a method to implicitly
incorporate label information into the training process of autoencoders, by shift-
ing the data samples in the input space in a way such that they become more
easily classifiable. The proposed method is lightweight, as it doesn’t require any
specialized loss functions or tuples of samples for the training process, making
it suitable for deployment in mobile applications, e.g., on UAVs for identifica-
tion of persons of interest. Moreover, significantly improved accuracy results are
achieved in various classifiers, including computationally inexpensive ones such
as the Nearest Centroid classifier.

The rest of this paper is structured as follows. Section 2 provides insight
into related work on the subject of discriminative dimensionality reduction ap-
proaches and highlights the advantages of the proposed method. In Section 3,
after a brief summary of autoencoders, the proposed discriminatively trained
autoencoders are introduced. Section 4 presents the experimental setup used for
the evaluation of the proposed method as well as the performance of various
classifiers when using the proposed methodology. Finally, our conclusions are
drawn in Section 5.

2 Related Work

Autoencoders [12] have been widely deployed in the past to facilitate several
classification tasks, including the task of face recognition [10]. As autoencoders
are trained in an unsupervised fashion, research interest steered towards incor-
porating supervised information into their training process, so as to produce
hidden representations better suited to specific tasks.

In facial expression recognition, for example, [13] proposed a method to dis-
criminate between features that are relevant to the facial expression recognition
and features that are irrelevant to this purpose. In [8] the use of pose variations
at given degrees of yaw rotation of the same face was suggested for mapping
the variations back to the neutral pose progressively, by manipulating the loss
functions for the variations.



In [14], the label information is incorporated into an AE’s training process by
augmenting the loss function so as to include the classification error. In another
approach, [16] employ discriminative criteria by forcing pairs of representations
corresponding to the same face to be closer together in the latent Euclidean
subspace than to other representations corresponding to different faces, using a
triplet loss method. However, heuristically selecting such triplets is very compu-
tationally expensive. Similarly, in [4], gated autoencoders, which require pairs of
samples as inputs, were deployed for the task of measuring similarity between
parents and children.

Methods such as the aforementioned ones focus on either incorporating the
classification error into the AE’s objective, or by utilizing carefully selected tuples
of samples. In contrast, the method proposed in this work does not require any
complex loss functions, which may disrupt the convergence of the reconstruction
error of the AE, or the selection of any specialized tuples, which imposes heavy
computational costs during the training process of the AE.

3 Proposed Method

In the following sections, a summary of autoencoders is presented. Then, by
exploiting supervised information, the proposed discriminative autoencoders are
introduced and analyzed.

3.1 Autoencoders

Autoencoders (AEs) are neural networks which learn to map their input into
a latent subspace of typically lower dimension so as to reconstruct their input
through the latent (or hidden) representation [17, 18]. As the input can be re-
constructed given the hidden representation, the latter can be thought of as a
low-dimensional representation of the input data.

The process through which the input is mapped to the latent representation is
referred to as the encoding part of the AE and it may consist of several layers of
neurons accompanied by non-linear activation functions. These non-linearities
enable the AE to uncover more complex relations in the data, and separates
autoencoders from linear dimensionality reduction algorithms.

Formally, an Autoencoder learns to map its input x ∈ RD into a hidden
representation y ∈ Rd, using one or more layers of non-linearities:

y = f(x; θenc) (1)

where f denotes the encoding procedure and θenc is the set of parameters of the
encoding part. The hidden representation y is then decoded through a similar
procedure, i.e., one with a symmetrical architecture of layers, to produce the
reconstruction x̂ of the input:

x̂ = g(y; θdec) (2)



where g denotes the decoding procedure and θdec is the set of parameters of the
decoding part.

The parameters {θenc, θdec} of the network are initialized either randomly
or by using an improved initialization method [5], and updated through an er-
ror backpropagation algorithm, such as ADAM [9], so as to minimize the error
between the produced reconstruction and the network’s input, e.g., the mean
squared error between the reconstruction and the input:

` = ‖x̂− x‖22 (3)

3.2 Discriminative Autoencoders

The latent representation produced by an AE is learned via minimizing the
network’s reconstruction error. Intuitively, if the target to be learned for each
sample is a modified version of itself, such that it is closer to other samples of the
same class, the network will learn to reconstruct samples which are more easily
separable. This modification should intuitively be reflected by the intermediate
representation, thus producing well-separated low-dimensional representations
of the network’s input data.

Let x̃
(t)
i be the target reconstruction of sample xi, then for t = 0, x̃

(0)
i ≡ xi

corresponds to the standard AE targets. The target shifting process may be
repeated multiple times, each time building on top of the previous iteration.
The exponent t denotes the current iteration. The objective to be minimized for
these discriminative autoencoders becomes:

` = ‖x̂− x̃(t)‖22 (4)

The new targets may be shifted so that the samples are moved towards their
class centroids, weighted by a small value α:

x̃
(t+1)
i = (1− α)x̃

(t)
i + α(

1

|Ci|
∑

x̃
(t)
j ∈Ci

x̃
(t)
j ) (5)

where Ci is set of samples belonging to the same class as the i-th sample.
Respectively, the distances between samples and centroids of rival classes

could be enlarged by moving each sample away from the mean of all samples
belonging to other classes:

x̃
(t+1)
i = (1 + α)x̃

(t)
i − α(

1

N − |Ci|
∑

x̃
(t)
j /∈Ci

x̃
(t)
j ) (6)

where N is the number of samples in the dataset. However, Equation (6) can
be modified to only include the centroids of rival classes within a given range
of each sample, or only the top k nearest rivalling centroids to the i-th sample,
instead of the mean of all rival class samples.



4 Experiments

The proposed methodology is evaluated on two popular face recognition datasets,
through measuring the accuracy achieved by several classifiers using as input the
latent representations obtained by the discriminative AEs.

4.1 Datasets

The proposed methodology is evaluated on the ORL faces dataset [15] as well
as the Extended Yale B dataset [11]. For both datasets, the grayscale images
depicting the faces to be recognized are resized to 32× 32, meaning the original
data dimension is 1024. The dimension is downscaled by a factor of 4, down to
256, by the AEs.

The ORL dataset consists of 400 pictures depicting 40 subjects under slight
pose, expression and other variations. Five-fold cross-validation is commonly
used for the conduction of experiments with this dataset, where five experiments
are conducted using 80% of the images per person as training data and selecting
a different portion of the dataset for each fold such that all images serve as
training and testing data at different runs.

The cropped version of the Yale dataset is used in our experiments, which
contains images depicting 38 individuals under severe lighting variations and
slight pose variations. Typically, half of the images per person are selected as
training data and evaluation is performed on the remaining half images. We
follow the same dataset splitting methodology performed five times and average
the results over all folds.

4.2 Classifiers

The performance of four different classifiers is compared for the representations
obtained by a classical AE and the representations obtained by the proposed
AEs as well as for the original 1024-dimensional feature vectors corresponding
to the pixel intensities.

Multilayer Perceptron A Multilayer Perceptron (MLP) [3], without hidden
layers, maps its input to output neurons which correspond to the various classes
describing the data. Thus the input layer has as many neurons as is the dimen-
sionality of the input data, and the output layer has as many neurons as is the
number of classes. The softmax function is typically used as the activation func-
tion in the output layer of neurons, in order to produce a probability distribution
over the possible classes, which may then be used for the optimization of the
network’s parameters via the minimization of the categorical cross-entropy loss
function.



Nearest Centroid The Nearest Centroid (NC) classifier assigns samples to the
class whose centroid (i.e., mean of samples belonging to that class) lies the closest
to them in space. The dimensionality of the data heavily affects the performance
of this classifier, as the distances between very high-dimensional data have been
shown to be inefficient for determining neighboring samples [1].

k-Nearest Neighbors Similarly to the NC classifier, the k-Nearest Neighbors
(kNN) [2] classifier assigns samples to the class to which the majority of its k
nearest neighbors belongs to. The dimensionality of the data affects the per-
formance of this classifier as well, as it requires the computation of distances
between all data samples.

Support Vector Machine A Support Vector Machine (SVM) [7] aims to find
the optimal hyperplane to separate samples belonging to different classes. The
kernel method can be utilized by SVMs to map the input data into a higher-
dimensional space which is more easily separable by linear hyperplanes. In our
experiments, the Radial Basis Function (RBF) kernel was used for this classifier.

4.3 Experimental Results

The accuracy achieved by the above classifiers is evaluated and compared for six
types of inputs (parentheses show the respective notation used in corresponding
Tables and Figures):

1. the original 1024-dimensional feature vectors, corresponding to pixel inten-
sities (No AE)

2. the 256-dimensional latent representations achieved by a standard AE (AE)
3. the 256-dimensional latent representations achieved by the proposed AEs

where the targets were shifted:
(a) towards their class centers (dAE-1)
(b) towards their class center as well as away from the nearest rival-class

center (dAE-2)

For fair comparison between the results obtained by the standard AE and
the proposed AEs the same architecture, number of epochs and initialization was
used. In total, the target shifting process is applied five times over the training
process of the AE. As for the hyperparameter α, a value of 0.4 was used for the
shift towards the class centers and a small value of 0.01 for the shift away from
rival centers, to ensure the shift in the input space is smooth.

The performance achieved by the evaluated classifiers for all input represen-
tations for the ORL dataset is summarized in Table 1. The dAE-2 method yields
the best improvement for all classifiers, even though using the dAE-1 method
the results still surpass those achieved by using the pixel intensities and the
low-dimensional representations obtained by the standard AE.

Although the performance achieved by the MLP using the pixel intensities
representation is quite high, the high-dimensionality of the data imposes higher



computational costs both in training and deployment. More importantly, the
performance achieved by the less computationally intensive NC classifier is very
close to the performance achieved by the MLP, and yields 10% and 15% improved
accuracy results over the accuracy achieved when using the pixel intensities
representation and the representation obtained by the standard AE respectively.

MLP NC kNN SVM

No AE 96.25 ± 1.58 85.25 ± 1.22 88.25 ± 5.51 90.75 ± 1.69
AE 92.75 ± 2.42 79.50 ± 1.87 82.25 ± 4.35 88.75 ± 2.50

dAE-1 96.00 ± 2.29 94.75 ± 2.29 95.25 ± 2.42 95.50 ± 1.69
dAE-2 97.00± 1.50 95.50± 1.87 96.25± 2.09 96.50± 1.87

Table 1. ORL dataset accuracy results.

Table 2 summarizes the accuracy achieved by all classifiers and input repre-
sentations for the Yale dataset. The proposed methods outperform the baselines
by a large margin. The disadvantage of the NC and kNN classifiers when data
dimensionality is high becomes very clear in this dataset when the pixel intensi-
ties are used as the data representation, indicated by their extremely inaccurate
predictions and low accuracy results.

MLP NC kNN SVM

No AE 93.52 ± 1.07 10.94 ± 1.61 54.91 ± 1.54 71.19 ± 1.40
AE 88.25 ± 1.48 63.24 ± 2.06 73.70 ± 1.10 85.07 ± 1.48

dAE-1 94.40± 0.78 89.93± 0.68 91.12 ± 1.33 94.51 ± 0.63
dAE-1 94.30 ± 0.79 89.64 ± 0.91 91.43± 0.88 94.61± 0.74

Table 2. YALE dataset accuracy results.

The results indicate that the proposed AEs are capable of generalizing well
and implicitly applying the shifting process to unknown test samples. Figures 1
and 2 illustrate and ascertain this hypothesis. The left plot in both Figures is a
3-dimensional projection of the hidden representation learned by the standard
AE, obtained via PCA. The middle plot is a 3-dimensional PCA projection
of the representation learned by the dAE where the targets of the AE have
been shifted five times in total towards their class centers. Finally, the plot on
the right in both Figures is the 3-dimensional PCA projections of the hidden
representation of the test samples, obtained by the same dAE as the middle
projection. For both datasets, the 3D projections of the AE representation are
difficult to unfold into separable manifolds. Through iterative repetitions of the
target shifting process however, manifolds start to form and become obvious.
Furthermore, the test samples appear at positions close to their counterparts
used in the training process in the 3D projection, meaning that the AE learns
to map those samples closer to their manifold.



(a) (b) (b)

Fig. 1. ORL hidden representation 3-dimensional projection by PCA: (a) hidden rep-
resentation of the training data obtained by standard AE, (b) hidden representation
of the training data obtained by dAE-1, and (c) hidden representation of the test data
also obtained by dAE-1.

(a) (b) (c)

Fig. 2. YALE hidden representation 3-dimensional projection by PCA: (a) hidden
representation of the training data obtained by standard AE, (b) hidden representation
of the training data obtained by dAE-1, and (c) hidden representation of the test data
also obtained by dAE-1.

The distribution shift that occurs to the training samples also affects the
test samples belonging to the same classes. This is partly due to the fact that
the testing samples follow more or less the distribution of the training samples
in the input space as well. However, in the original input space as well as the
subspace produced by the standard AE, the various class distributions are not
well separated at all, which makes classification by lightweight classifiers very
difficult. This is reflected by the extremely low accuracy results achieved by the
NC and kNN classifiers especially in the Yale dataset (Table 2).

Figures 3 and 4 show samples (left) and their reconstructions (right) as given
by the dAE-1 from the ORL and YALE dataset respectively. Figure 3a shows a
sample from a training subset of the ORL dataset and its reconstruction. The
pose variation of the input image is alleviated in the reconstruction, i.e. the face
depicted is frontalized making it easier to recognize. Figure 3b shows a sample



from a test subset of the ORL dataset and its reconstruction, where the facial
expression of the depicted face is neutralized.

(a) (b)

Fig. 3. Examples of ORL reconstructions: (a) input and reconstruction of a training
sample, (b) input and reconstruction of a test sample.

Figure 4a shows a sample from a training subset of the YALE dataset and
its reconstruction, as it is given by the dAE-1. As the sample is moved towards
the centroid of its class, the illumination increases. Figure 4b shows a sample
of a test subset of the YALE dataset and its reconstruction by the same AE.
The network seems to have learned to generalize and is able to move the test
sample towards its class centroid, removing the harsh obscurities imposed by the
illumination imbalance.

(a) (b)

Fig. 4. Examples of YALE reconstructions: (a) input and reconstruction of a training
sample, (b) input and reconstruction of a test sample.

The above reconstructions are consistent with the 3-dimensional projections
shown in Figures 1 and 2 as well as the results presented in Tables 1 and 2 for the
ORL and YALE datasets respectively: the discriminatively trained autoencoders
are able to learn to map their input into a low-dimensional representation which
is well-separated as well as to reconstruct a version of their input which is more
informative about the depicted person’s identity, by removing unrelated features
such as pose, facial expression and illumination.



5 Conclusion

A method of training autoencoders, such that the low-dimensional representa-
tions of the data are more easily separable, has been proposed in this paper.
The low-dimensional representation is learned in a way such that the recon-
struction of the AE is a modified version of its input, which is shifted in space
so that samples belonging to the same class will lie closer together and further
from samples of rivalling classes. The proposed AE representations improve the
performance of various classifiers, as illustrated by experimental results on two
popular face recognition datasets. The classifiers’ tolerance to pose, lighting and
other variations is increased and they produce very accurate results while keep-
ing the computational complexity low. Thus, the proposed AEs may be utilized
in mobile environments, such as UAVs, for the task of fast and accurate person
identification.
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