
Using Deep Learning to Detect Price Change

Indications in Financial Markets

Avraam Tsantekidis∗, Nikolaos Passalis∗, Anastasios Tefas∗,

Juho Kanniainen†, Moncef Gabbouj‡ and Alexandros Iosifidis‡§

∗Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

{avraamt, passalis}@csd.auth.gr, tefas@aiia.csd.auth.gr
†Laboratory of Industrial and Information Management, Tampere University of Technology, Tampere, Finland

juho.kanniainen@tut.fi
‡Laboratory of Signal Processing, Tampere University of Technology, Tampere, Finland

{moncef.gabbouj, alexandros.iosifidis}@tut.fi
§Department of Engineering, Electrical and Computer Engineering, Aarhus University, Denmark

alexandros.iosifidis@eng.au.dk

Abstract—Forecasting financial time-series has long been
among the most challenging problems in financial market
analysis. In order to recognize the correct circumstances to
enter or exit the markets investors usually employ statistical
models (or even simple qualitative methods). However, the
inherently noisy and stochastic nature of markets severely
limits the forecasting accuracy of the used models. The
introduction of electronic trading and the availability of
large amounts of data allow for developing novel machine
learning techniques that address some of the difficulties
faced by the aforementioned methods. In this work we
propose a deep learning methodology, based on recurrent
neural networks, that can be used for predicting future
price movements from large-scale high-frequency time-
series data on Limit Order Books. The proposed method
is evaluated using a large-scale dataset of limit order book
events.

I. INTRODUCTION

Using mathematical models to gain an advantage in

financial markets is the main consideration of the field of

quantitative analysis. The main hypothesis of the field is

that the utilization time-series of values like the price and

volume of financial products produced by the market can

be analyzed with mathematical and statistical models to

extract predictions about the current state of the market

and future changes in metrics, such as the price volatility

and direction of movement. However, these mathemati-

cal models rely on handcrafted features and have their

parameters tuned manually by observation, which can

reduce the accuracy of their predictions. Furthermore,

asset price movements in the financial markets very

frequently exhibit irrational behaviour since they are

largely influenced by human activity that mathematical

models fail to capture.

Recently there have been multiple solution to the

aforementioned limitations of handcrafted systems using

machine learning models. Given some input features

machine learning models can be used to predict the

behaviour of various aspects of financial markets [1], [2],

[3], [4]. This has led several organizations, such as hedge

funds and investment firms, to create machine learning

models alongside the conventional mathematical models

for conducting their trading operation.

With the introduction of electronic trading and the au-

tomation that followed has increased the trading volume

thus producing a immense amount of data that represent-

ing the trades happening in exchanges. Exchanges have

been gathering this trading data, creating comprehensive

logs of every transaction, selling them to financial insti-

tutions that analyze them to discover signals that provide

foresight for changes in the market, which can in turn be

used by algorithms to make the profitably manage invest-

ments. However, applying machine learning techniques

on such large-scale data is not a straightforward task.

Being able to utilize the information at this scale can

provide strategies for many different market conditions

but also safeguard from volatile market movements.

The main contribution of this work is the proposal of

a deep learning methodology, based on recurrent neural

networks, that can be used for predicting future mid-

price movements from large-scale high-frequency limit

order data.

In Section 2 related work on machine learning models

that were applied on financial data is briefly presented.

Then, the used large-scale dataset is described in detail

in Section 3. In Section 4 the proposed deep learning

methodology is introduced, while in Section 5 the ex-

perimental evaluation is provided. Finally, conclusions

are drawn and future work is discussed in Section 6.

II. RELATED WORK

Recent Deep Learning methods has been shown to

significantly improve upon previous machine learning

techniques in tasks such as speech recognition [5],

image captioning [6], [7], and question answering [8].

Deep Learning models, such as Convolutional Neu-

ral Networks (CNNs) [9], and Recurrent Neural Net-

works (RNNs), e.g., the Long Short-Term Memory Units

(LSTMs) [10], have greatly contributed in the increase

of performance on these fields, with ever deeper archi-

tectures producing even better results [11].

In Deep Portfolio Theory [12], the authors use autoen-

coders to optimize the performance of a portfolio and

beat several profit benchmarks, such as the biotechnol-

ogy IBB Index. Similarly in [2], a Restricted Boltzmann

Machine (RBM) is used to encode monthly closing

prices of stocks and then it is fine-tuned to predict the

direction the price of each stock will move (above or

below the median change). This strategy is compared to

a simple momentum strategy and it is established that

the proposed method achieves significant improvements

in annualized returns.

The daily data of the S&P 500 market fund prices and

Google domestic trends of 25 terms like “bankruptcy”

and “insurance” are used as the input to a recurrent

neural network that it is trained to predict the volatility

of the market fund’s price [3]. This method greatly im-

proves upon existing benchmarks, such as autoregressive

GARCH and Lasso techniques.

An application using high frequency limit orderbook

(LOB) data is [4], where the authors create a set of

handcrafted features, such as price differences, bid-

ask spreads, and price and volume derivatives. Then,

a Support Vector Machine (SVM) is trained to predict

whether the mid-price will move upwards or downward

in the near future using these features. However, only

2000 data points are used for training the SVM in each

training round, limiting the prediction accuracy of the

model.

To the best of our knowledge this is the first work that

uses a Limit Order Book data on such a large-scale with

more than 4 million events to train LSTMs for predicting

the price movement of stocks. The method proposed in

this paper is also combined with an intelligent normaliza-

tion scheme that takes into account the differences in the

price scales between different stocks and time periods,

which is essential for effectively scaling to such large-

scale data.

III. HIGH FREQUENCY LIMIT ORDER DATA

In financial equity markets a limit order is a type of

order to buy or sell a specific number of shares within

a set price. For example, a sell limit order (ask) of $10
with volume of 100 indicates that the seller wishes to sell

the 100 shares for no less that $10 each. Respectively,

a buy limit order (bid) of $10 it means that the buyer

wishes to buy a specified amount of shares for no more

than $10 each.

Consequently the orderbook has two sides, the bid

side, containing buy orders with prices pb(t) and vol-

umes vb(t), and the ask side, containing sell orders with

prices pa(t) and volumes va(t). The orders are sorted

on both sides based on the price. On the bid side p
(1)
b (t)

is the is the highest available buy price and on the ask

side p
(1)
a (t) is the lowest available sell price.

Whenever a bid order price exceeds an ask order price

p
(i)
b (t) > p

(j)
a (t), they “annihilate”, executing the orders

and exchanging the traded assets between the investors.

If there are more than two orders that fulfill the price

range requirement the effect chains to them as well.

Since the orders do not usually have the same requested

volume, the order with the greater size remains in the

orderbook with the remaining unfulfilled volume.

Several tasks arise from this data ranging from the

prediction of the price trend and the regression of the

future value of a metric, e.g., volatility, to the detection

of anomalous events that cause price jumps, either up-

wards or downwards. These tasks can lead to interesting

applications, such as protecting the investments when

market condition are unreliable, or taking advantage of

such conditions to create automated trading techniques

for profit.

Methods utilizing this data often use subsampling

techniques, such as the OHLC (Open-High-Low-Close)

resampling [13], to limit the number of values exist

for each timeframe, e.g., every minute or every day.

Even though the OHLC method preserves the trend

features of the market movements, it removes all the

microstructure information of the markets. Note that it

is difficult to preserve all the information contained in

the LOB data, since orders arrive inconsistently and most

methods require a specific number of features for each

time step. This is one of the problems RNNs can solve

and take full advantage of the information contained in

the data, since they can natively handle this inconsistent

amount of incoming orders.

2

IV. LSTMS FOR FINANCIAL DATA

The input data consists of 10 orders for each side of

the LOB (bid and ask). Each order is described by 2
values, the price and the volume. In total we have 40
values for each timestep. The stock data, provided by

Nasdaq Nordic, come from the Finnish companies Kesko

Oyj, Outokumpu Oyj, Sampo, Rautaruukki and Wartsila

Oyj. The time period used for collecting that data ranges

from the 1st to the 14th June 2010 (only business days

are included), while the data are provided by the Nasdaq

Nordic data feeds [14].

The dataset is made up of 10 days for 5 different

stocks and the total number of messages is 4.5 million

with equally many separate depths. Since the price and

volume range is much greater than the range of the

values of the activation function of our neural network,

we need to normalize the data before feeding them to

the network. To this end, standardization (z-score) is

employed to normalize the data:

xnorm =
x− x̄

σx̄

(1)

where x is the vector of values we want to normalize, x̄

is the mean value of the data and σx̄ is the standard

deviation of the data. Instead of simply normalizing

all the values together, we take into account the scale

differences between order prices and order volumes

and we use a separate normalizer, with different mean

and standard deviation, for each of them. Also, since

different stocks have different price ranges and drastic

distributions shifts might occur in individual stocks for

different days, the normalization of the current day’s

values uses the mean and standard deviation calculated

using previous day’s data.

We want to predict the direction towards which the

price will change. In this work the term price is used to

refer to the mid-price of a stock, which is defined as the

mean between the best bid price and best ask price at

time t:

pt =
p
(1)
a (t) + p

(1)
b (t)

2
(2)

This is a virtual value for the price since no order can

happen at that exact price, but predicting its upwards

or downwards movement provides a good estimate of

the price of the future orders. A set of discrete choices

must be constructed from our data to use as targets for

our classification model. Simply using pt > pt+k to

determine the direction of the mid price would intro-

duce unmanageable amount of noise, since the smallest

change would be registered as an upward or downward

movement.

Note that each consecutive depth sample is only

slightly different from the previous one. Thus the short-

term changes between prices are very small and noisy.

In order to filter such noise from the extracted labels we

use the following smoothed approach. First, the mean of

the previous k mid-prices, denoted by mb, and the mean

of the next k mid-prices, denoted by ma, are defined as:

mb(t) =
1

k

k
∑

i=0

pt−i (3)

ma(t) =
1

k

k
∑

i=1

pt+i (4)

where pt is the mid price as described in Equation (2).

Then, a label lt that express the direction of price move-

ment at time t is extracted by comparing the previously

defined quantities (mb and ma):

lt =

1, if mb(t) > ma(t) · (1 + α)

−1, if mb(t) < ma(t) · (1− α)

0, otherwise

(5)

where the threshold α is set as the least amount of

change in price that must occur for it to be considered

upward or downward. If the price does not exceed this

limit, the sample will be considered to belong to the

stationary class. Therefore, the resulting label expresses

the current trend we wish to predict. Note that this

process is applied for every time step in our data.

An improved version of RNNs, namely the

LSTM [10], is employed to classify our data. The

LSTM solves the problem of vanishing gradients, which

makes virtually impossible for an RNN to learn to

correlate temporally distant events. This is achieved

by protecting its hidden activation using gates between

each of its transaction points with the rest of its layer.

The hidden activation that is protected is called the cell

state. The following equations describe the behavior of

the LSTM model [10]:

ft = σ(Wxfx+Whfht−1 + bf) (6)

it = σ(Wxix+Whiht−1 + bi) (7)

c′t = tanh(Whcht−1 +Wxcxt + bc) (8)

ct = ftct−1 + itc
′

t (9)

ot = σ(Wocct +Wohht−1 + bo) (10)

ht = otσ(ct) (11)

where ft, it and ot are the activations of the input, forget

and output gates at time-step t, which control how much

3

of the input and the previous state will be considered and

how much of the cell state will be included in the hidden

activation of the network. The protected cell activation at

time-step t is denoted by ct, whereas ht is the activation

that will be given to other components of the model.

The parameters of the model are learned by minimiz-

ing the categorical cross entropy loss defined as:

L(W) = −

L
∑

i=1

yi · log ŷi (12)

where L is the number of different labels

and the notation W is used to refer

to the parameters of the LSTM, i.e.,

Wxf ,Whf ,Wxi,Whi,Whc,Wxc,Woc,Woh,bf ,bi,

bc, and bo. The ground truth vector is denoted by y,

while ŷ is the predicted label distribution. The loss

is summed over all samples in each batch. The most

commonly used method to minimize the loss function

defined in Equation (6) and learn the parameters W of

the model is gradient descent [15]:

W′ = W − η ·
∂L

∂W
(13)

where W′ are the parameters of the model after each

gradient descent step and η is the learning rate. In

this work we utilize the Adaptive Moment Estimation

algorithm, known as ADAM [16], which ensures that

the learning steps are scale invariant with respect to the

parameter gradients.

The input to the LSTM is a sequence of vectors X =
{x0,x1, . . . ,xn} that represent the LOB depth at each

time step t. Each xt is fed sequentially to the LSTM

and its output yt expresses the categorical distribution

for the three direction labels (upward, downward and

stationary), as described in Equation (5), for each time-

step t.

V. EXPERIMENTAL EVALUATION

In our first attempt to train an LSTM network to

predict the mid-price trend direction we noticed a very

interesting pattern in the mean cost per recurrent step,

as shown in Figure 1. The cost is significantly higher on

the initial steps before it eventually settles. This happens

because it is not possible for the network to build a

correct internal representation having seen only a few

samples of the depth. To avoid this unnecessary source

of error and noise in the training gradients, we do not

propagate the error for the first 100 recurrent steps. These

steps are treated as a ”burn-in” sequence, allowing the

network to observe a portion of the LOB depth timeline

before making an accountable prediction.

0 50 100 150 200 250 300
LSTM step

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

C
os

t

train
test

Fig. 1: Mean cost per recurrent step of the LSTM

network

TABLE I: Experimental results for different prediction

horizons k

Model Mean Recall Mean Prec. Mean F1 Cohen’s κ

Prediction Horizon k = 10

SVM 39.62% 44.92% 35.88% 0.068

MLP 47.81% 60.78% 48.27% 0.226

LSTM 60.77% 75.92% 66.33% 0.500

Prediction Horizon k = 20

SVM 45.08% 47.77% 43.20% 0.139

MLP 51.33% 65.20% 51.12% 0.255

LSTM 59.60% 70.52% 62.37% 0.430

Prediction Horizon k = 50

SVM 46.05 % 60.30% 49.42% 0.243

MLP 55.21% 67.14% 55.95% 0.324

LSTM 60.03% 68.50% 61.43% 0.411

Experimentally we found out that to avoid over-fitting

the hidden layer of the LSTM should contain 32 to 64

hidden neurons. If more hidden neurons are used, then

the network can easily overfit the data, while if less

hidden neurons are used the network under-fits the data

reducing the accuracy of the predictions.

We use an LSTM with 40 hidden neurons followed

by a feed-forward layer with Leaky Rectifying Linear

Units as activation function [17] . We split our dataset as

follows. The first 7 days are used to train the network,

while the next 3 days are used as test data. We train

the same model for 3 different prediction horizons k, as

defined in Equations (3) and (4).

To measure the performance of our model we use

Kohen’s kappa [18], which is used to measure the

concordance between sets of given answers, taking into

consideration the possibility of random agreements hap-

pening. We also report the mean recall, precision and F1

score between all 3 classes. Recall is the number true

positive samples divided by the sum of true positives

and false negatives, while precision is the number of

true positive divided by the sum of true positives and

false positives. F1 score is the harmonic mean of the

precision and recall metrics.

4

The results of our experiments are shown in Table I.

We compare our results with those of a Linear SVM

model and an MLP model with Leaky Rectifiers as

activation function. The SVM model is trained using

stochastic gradient descent since the dataset is too large

to use a closed-form solution. The MLP model uses a

single hidden layer with 128 neurons with Leaky ReLU

activations. The regularization parameter of the SVM

was chosen using cross validation on a split from the

training set. Since both models are sequential, we feed

the concatenation of the previous 100 depth samples as

input and we use as prediction target the price movement

associated with the last depth sample. The proposed

method significantly outperforms all the other evaluated

models, especially for short term prediction horizons

(t = 10 and t = 20).

VI. CONCLUSION

In this work we trained an LSTM network on high

frequency LOB data, applying a temporally aware nor-

malization scheme on the volumes and prices of the

LOB depth. The proposed approach was evaluated using

different prediction horizons and it was demonstrated

that it performs significantly better than other techniques,

such as Linear SVMs and MLPs, when trying to predict

short term price movements.

There are several interesting future research directions.

First, more data can be used to train the proposed model,

scaling up to a billion training samples, to determine

if using more data leads to better classification per-

formance. With more data also increase the ”burn-in”

phase along with the prediction horizon to gauge the

models ability to predict the trend further into the future.

Also, an attention mechanism [6], [19], can be intro-

duced to allow the network to capture only the relevant

information and avoid noise. Finally, more advanced

trainable normalization techniques can be used, as it was

established that normalization is essential to ensure that

the learned model will generalize well on unseen data.

ACKNOWLEDGMENT

The research leading to these results has received

funding from the H2020 Project BigDataFinance MSCA-

ITN-ETN 675044 (http://bigdatafinance.eu), Training for

Big Data in Financial Research and Risk Management.

Alexandros Iosifidis was supported from the Academy of

Finland Postdoctoral Research Fellowship (No. 295854).

He joined Aarhus University on August 2017.

REFERENCES

[1] M. F. Dixon, D. Klabjan, and J. H. Bang, “Classification-based
financial markets prediction using deep neural networks,” 2016.

[2] L. Takeuchi and Y.-Y. A. Lee, “Applying deep learning to
enhance momentum trading strategies in stocks,” 2013.

[3] R. Xiong, E. P. Nichols, and Y. Shen, “Deep learning
stock volatility with google domestic trends,” arXiv preprint

arXiv:1512.04916, 2015.
[4] A. N. Kercheval and Y. Zhang, “Modelling high-frequency limit

order book dynamics with support vector machines,” Quantitative

Finance, vol. 15, no. 8, pp. 1315–1329, 2015.
[5] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition

with deep recurrent neural networks,” in Proceedings of the

IEEE international conference on Acoustics, Speech and Signal

Processing (icassp), 2013, pp. 6645–6649.
[6] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov,

R. S. Zemel, and Y. Bengio, “Show, attend and tell: Neural image
caption generation with visual attention.” in Proceedings of the

International Conference on Machine Learning, vol. 14, 2015,
pp. 77–81.

[7] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep
captioning with multimodal recurrent neural networks (m-rnn),”
arXiv preprint arXiv:1412.6632, 2014.

[8] Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei, “Visual7w:
Grounded question answering in images,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 4995–5004.

[9] Y. LeCun, Y. Bengio et al., “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and

neural networks, vol. 3361, no. 10, p. 1995, 1995.
[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”

Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 770–778.
[12] J. Heaton, N. Polson, and J. Witte, “Deep portfolio theory,” arXiv

preprint arXiv:1605.07230, 2016.
[13] D. Yang and Q. Zhang, “Drift-independent volatility estimation

based on high, low, open, and close prices,” The Journal of

Business, vol. 73, no. 3, pp. 477–492, 2000.
[14] M. Siikanen, J. Kanniainen, and J. Valli, “Limit order books and

liquidity around scheduled and non-scheduled announcements:
Empirical evidence from nasdaq nordic,” Finance Research Let-

ters, vol. to appear, 2016.
[15] P. J. Werbos, “Backpropagation through time: what it does and

how to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp.
1550–1560, 1990.

[16] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[17] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proceedings of the

International Conference on Machine Learning, vol. 30, no. 1,
2013.

[18] J. Cohen, “A coefficient of agreement for nominal scales,”
Educational and Psychological Measurement, vol. 20, no. 1, pp.
37–46, 1960.

[19] K. Cho, A. Courville, and Y. Bengio, “Describing multimedia
content using attention-based encoder-decoder networks,” IEEE

Transactions on Multimedia, vol. 17, no. 11, pp. 1875–1886,
2015.

5

