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Abstract—Unmanned Aerial Vehicles, also known as drones,
are becoming increasingly popular for video shooting tasks
since they are capable of capturing spectacular aerial shots.
Deep learning techniques, such as Convolutional Neural Net-
works (CNNs), can be utilized to assist various aspects of
the flying and the shooting process allowing one human to
operate one or more drones at once. However, using deep
learning techniques on drones is not straightforward since
computational power and memory constraints exist. In this
work, a quantization-based method for learning lightweight
convolutional networks is proposed. The ability of the proposed
approach to significantly reduce the model size and increase
both the feed-forward speed and the accuracy is demonstrated
on two different drone-related tasks, i.e., human concept de-
tection and face pose estimation.

1. Introduction

Unmanned Aerial Vehicles (UAVs), also known as
drones, are becoming increasingly popular for video shoot-
ing tasks since they are capable of capturing spectacular
aerial shots that would be otherwise very difficult to obtain.
However, flying a drone in a professional shooting setting
requires at least two operators for each deployed drone, i.e.,
one for controlling the flight path and avoiding no-flight
zones or other possible hazards, and one for controlling the
camera.

Deep learning techniques, such as Convolutional Neural
Networks (CNNs), can be utilized to assist various aspects
of the flying and the shooting process allowing one human
to operate one or more drones at once. This work is focused
on developing techniques that will assist the video shooting
of athletic events, e.g., road bicycle races or boat races.
Several aspects of the flying and the shooting process can
be assisted. First, a drone must be able to quickly identify
whether one or more humans exist in a scene. Note that apart
from the main drone camera, multiple smaller resolution
cameras might be also available to aid this task. After
humans have been identified in a scene, their positions are
inferred and it is determined whether they are part of the
crowd or they are persons of interest, e.g., the cyclists in
the case of a bicycle race event. In the first case, the drone
must fly away from the crowd (since the crowd defines a
no-flight zone), while in the latter it must carefully follow

the persons of interest, while avoiding any detected no-flight
zones. After detecting a person of interest the drone must
appropriately rotate the camera towards him. Since different
shots have different specifications, the relative position of
the person with respect to the camera, as well as the pose
of his face (tilt and the pan) must be estimated in order to
calculate the appropriate shooting angle.

Even though CNNs can be used to perform the afore-
mentioned tasks, deploying them on drones is not straight-
forward, since there are significant memory and process-
ing power constraints for any process running on-board.
Therefore, it is crucial to develop lightweight deep learning
models that would be able to run on-board and perform
real-time classification and detection tasks. Existing state-
of-the-art CNNs, such the VGG-16 [1], consist of hundreds
of millions parameters, making them unsuitable for handling
real-time tasks when the aforementioned constraints exist.
Interestingly, most of the parameters of these models are not
spent in the convolutional layers, but in the fully connected
layers that are responsible for handling the feature maps
extracted from the last convolutional layer. For example,
for the VGG-16 network [1], almost 90% of the model’s
parameters are needed for just three fully connected layers,
while only 10% of the parameters are used for its 13
convolutional layers. The reason for this is the large number
of feature maps extracted from the last convolutional layer.

Motivated by the aforementioned observation a new type
of quantization-based convolutional layer is proposed in
this work to allow for reducing the size of CNN models.
This layer is inspired by the well known Bag-of-Features
(BoF) model [2], [3], which is used to quantize an arbitrary
number of feature vectors into a constant length histogram
representation. The pipeline of the Bag-of-Features model
is the following. First, a number of feature vectors are
extracted from an image that are then quantized into a pre-
defined number of bins, that are called codewords. Finally,
the histogram representation of each image is compiled by
counting the number of feature vectors that were quantized
into each bin. In this work the features extracted from
the last convolutional layer are used. The proposed layer
effectively quantizes and compresses the representation ex-
tracted from the convolutional layers, while also allows the
network to handle arbitrary sized images. This is possible
since the representation extracted from the proposed layer
is decoupled from the size of the input image that is fed to



the network. This is in contrast to regular CNN formulations
where altering the input image size also alters the size of
the extracted feature maps.

The main contribution of this work is the proposal of
a novel BoF-based quantization layer that can significantly
reduce the size of CNNs, while increasing their classification
accuracy and speed. However, as explained in Section 3,
the computational complexity of existing BoF formulations,
such as [2], [3], is quite high thus making them unsuitable
for the tasks considered in this work. To overcome this
limitation, a fast linear variant of the BoF model is pro-
posed. This variant can be readily implemented with existing
deep learning tools allowing for easily using the proposed
technique, even with existing pretrained CNNs. The pro-
posed Convolutional Linear BoF model is evaluated using
two different drone-related tasks, i.e., concept detection of
humans using the VOC-2012 dataset [4], and pose (tilt and
pan) estimation of human faces for calculating the optimal
shooting angle [5]. It is experimentally demonstrated that
the proposed method can greatly reduce the model size and
increase the feed-forwarding speed, as well as improve the
accuracy of the models.

The rest of the paper is structured as follows. Related
work is introduced and compared to the proposed Convolu-
tional Linear BoF model in Section 2. The proposed method
is presented in detail in Section 3. Finally, the proposed
method is evaluated in Section 4, while conclusions are
drawn and future work is discussed in Section 5.

2. Related Work

Dealing with large CNNs is a well recognized problem
in the literature. Many techniques have been proposed to
reduce the model size [6], [7], [8], [9]. Usually compression
and pruning techniques are used to reduce the size of CNN
models [6], [7], [9]. Such techniques focus on compressing
an already trained CNN, instead of training a CNN with
fewer parameters in the first place. Some of these works [7],
[9], also use vector quantization techniques. However, pro-
posed the method uses a differentiable quantization scheme
that allows for training both the quantizer and the rest of the
network simultaneously. This is in contrast with compres-
sion techniques that merely use fixed quantization to reduce
the size of the model. Nonetheless, the method proposed
in this work can be combined with the aforementioned
approaches to further reduce the size of the model.

The proposed method is also related to supervised dic-
tionary learning approaches for the BoF representation [10],
[11], [12], [13], [14]. All these methods are designed to
work with handcrafted feature extractors instead of trainable
convolutional layers. To the best of our knowledge, this is
the first work that formulates the BoF model as a linear
convolutional layer that can be used in any CNN network
and allows for training the resulting network from scratch,
while reducing the size of the model and increasing the
feed-forwarding speed.

3. Proposed Method

The proposed Convolutional Linear BoF model, abbre-
viated as CL-BoF, is composed of a feature extractor, i.e.,
a set of convolutional and pooling layers, followed by the
proposed Linear BoF layer and a set of fully connected
layers. First, the feature extraction procedure is briefly dis-
cussed. Then, the proposed Linear BoF layer is presented
in detail. Finally, the used fully connected architecture and
the learning algorithm are presented.

Let Xi be an image that is fed to the convolutional
feature extractor. Various CNN architectures, such as the
VGG [1], or the ResNet [15], can be used for the feature
extraction step after removing their fully connected layers.
The last convolutional layer is used to extract the feature
vectors that are fed to the proposed Linear BoF layer. The
j-th feature vector extracted from the i-th image is denoted
by xij ∈ RD, where D is the number of feature maps
extracted from the last convolutional layer. The number of
the extracted feature vectors is denoted by Ni and depends
on the size of the feature map and the used filter size.

After the feature extraction process, the i-th image is
represented by a set of Ni feature vectors xij ∈ RD

(j = 1, . . . , Ni). Instead of fusing the extracted feature vec-
tors, which is the standard practice for CNNs [1], [15], the
proposed Linear BoF layer is used to compile a fixed-length
histogram for each image by quantizing its feature vectors
into a predefined number of histogram bins/codewords. The
length of the extracted histogram vector does not depend
on the number of available feature vectors, allowing the
network to handle images of arbitrary size without any mod-
ification and readily adapting to the available computational
resources.

The Linear BoF layer is composed of two sublayers: an
inner product layer that measures the similarity of the input
features to the codebook and a pooling layer that builds the
histogram of the quantized feature vectors. In the regular
BoF model [3], the similarity between each feature vector
xij and each codeword vk is calculated as:

[dij ]k = exp(
−||vk − xij ||2

σ
) ∈ R (1)

where σ is a scaling factor. However using this similarity
definition requires calculating the pairwise distances be-
tween all the feature vectors and the codewords and then us-
ing the exponential function to transform these distances into
similarities. Instead of using these computationally intensive
steps, the Linear BoF uses the dot product to measure the
similarity between each codeword and each feature vector:

[dij ]k = abs(vT
k xij) ∈ R (2)

where abs(x) is the absolute value operator, which is used
to ensure that Equation (2) properly encodes the similarity
between the feature vectors and the codewords. This defi-
nition allows for a significant speed-up of the calculations.
Furthermore, a regular convolutional layer can be used to
implement the pairwise similarity calculation using NK



filters of dimension D× 1× 1, where NK is the number of
the used codewords.

Then, l1 normalization is used to obtain the normalized
membership vector for each feature vector xij :

uij =
dij

||dij ||1
∈ RNK (3)

This vector describes the similarity of the feature vector xij

to each codeword vk. Finally, the histogram si is extracted
for each image by pooling (using a sum pooling layer) the
extracted membership vectors:

si =

Ni∑
j=1

uij ∈ RNK (4)

The Linear BoF layer receives the feature vectors of
an image and compiles its histogram representation. This
histogram is then fed to a classifier that decides the class of
the image. To this end, a multilayer perceptron (MLP) with
one hidden layer is used.

Without loss of generality it is assumed that the i-th
training image is annotated by a label ti and there are
NC different labels. It is straightforward to extend the
proposed method to multi-label classification problems [16],
or detection tasks [17].

Let WH ∈ RNH×NK be the hidden layer weights and
WO ∈ RNC×NH be the output layer weights, where NH

is the number of hidden neurons. Then, the hidden layer
activations for the input histogram si of the i-th image are
computed as:

hi = φ(relu)(WHsi + bH) ∈ RNH (5)

where φ(relu)(x) = max(0, x) is the rectifier activation
function which is applied element-wise and bH ∈ RNH

is the hidden layer bias vector. The output of the MLP is
calculated as:

yi = φ(softmax)(WOhi + bO) ∈ RNC (6)

where each output neuron corresponds to a label, bO ∈ RNC

is the output layer bias vector and φ(softmax) is the softmax
activation function.

The categorical cross entropy loss is used for training
the network:

L = −
N∑
i=1

NC∑
j=1

[ti]j log([yi]j) (7)

where ti ∈ RNC is the target output vector, which depends
on the class of the input image (ti) and it is defined as:
[ti]j = 1, if j = ti, or [ti]j = 0, otherwise.

All the parameters of the CL-BoF network can be
learned using regular back-propagation and gradient descent:

∆(Wconv,V,WMLP ) = −η(
∂L

∂Wconv
,
∂L

∂V
,

∂L

∂WMLP
)

(8)

where the notations Wconv, V, and WMLP are used to
refer to the parameters of the convolutional layers, the

Linear BoF layer and the classification layers respectively.
Instead of using the simple gradient descent, the Adam
algorithm is utilized [18]. The Adam algorithm computes
adaptive learning rates for each of the optimization parame-
ters using estimates of the first and second moments of the
gradient. For all the conducted experiments a learning rate
of η = 10−4 was used.

The codebook in the BoF model is usually initialized
by clustering the set of all feature vectors S = {xij |i =
1, . . . , N, j = 1, . . . , Ni}, where N is the number of training
images, using the k-means algorithm. However, when the
inner product similarity (Equation (2)) is used instead of
the euclidean-based similarity (Equation (1)) it is no longer
meaningful to use euclidean-based clustering. Indeed, it
was experimentally established that randomly initializing the
codebook (using Glorot uniform initialization [19]) works
better than using k-means initialization. The fully connected
layers were also initialized using Glorot uniform initializa-
tion.

4. Experiments

4.1. Evaluation Setups

The proposed method is evaluated on two different
drone-related concept detection and classification tasks. The
first task concerns concept detection [20], where the concept
of humans is to be detected. As described before, being
able to quickly detect humans in a given scene is crucial
to appropriately control both the flight path and the camera
of the drone. For the concept detection task, the VOC-2012
dataset, which contains images with and without humans, is
used. The VOC-2012 is a challenging dataset, since humans
appear in a wide range of natural settings. The predefined
train split (5717 images) and validation split (5823 images)
were used. Approximately 40% of the dataset images depict
a human.

The second task is related to face pose estimation. After
detecting the face of the main actor, e.g., a cyclist, the drone
must be able to identify his pose to calculate the appropriate
shooting angle. The Head Pose Image Database [5], is used
to evaluate the proposed method for this task. Both the pan
and the tilt of each face must be predicted. The Head Pose
Image Database contains discrete annotations for the tilt
(-90, -60, -30, -15, 0, +15, +30, +60, and +90 degrees) and
the pan (-90, -75, -60, -45, -30, -15, 0, +15, +30, +45, +60,
+75, and +90 degrees). Since the pose estimation procedure
is expected to run after a face has been detected, the face was
extracted from each image using the supplied annotations.

Accuracy, average precision per class (macro precision)
and average recall per class (macro recall) were used to
evaluate the classification performance. Accuracy measures
the percentage of the predicated labels that exactly match
the ground truth. Precision is defined as the ratio of true
positives over the sum of true positives and false positives,
while recall is defined as the ratio of true positives over the
sum of true positives and false negatives. For the head pose



TABLE 1. CONCEPT DETECTION EVALUATION

Method # Conv. Params # BoF Params # FC Params # Total Params Accuracy Recall Precision
CNN 6,529,664 - 4,719,362 11,249,026 78.81 77.95 77.58
CL-BoF (8) 6,529,664 4,096 706 6,534,466 81.13 77.26 82.64
CL-BoF (128) 6,529,664 65,536 33,538 6,628,738 82.43 78.25 85.16

TABLE 2. CONCEPT DETECTION: ACCURACY AND SPEED
EVALUATION FOR IMAGES OF VARIOUS SIZES USING THE PROPOSED

CL-BOF MODEL

Image size Clas. Accuracy Clas. Time per Image
224x224 82.43% 9.11 msec
200x200 82.62% 6.91 msec
176x176 82.12% 5.10 msec
152x152 81.69% 3.68 msec
128x128 79.13% 2.52 msec
104x104 74.65% 1.65 msec

estimation, the mean prediction error (in degrees) is also
reported.

4.2. Concept Detection Evaluation

The concept detection evaluation results are shown in
Table 1. For both the CNN and the CL-BoF models the
convolutional layers were initialized using a VGG model [1],
that was pretrained on ImageNet [21]. Batch normalization
is used after the last convolutional layer [22]. For the
baseline CNN model the initial fully connected layers were
discarded and replaced by a 256×2 fully connected layer.
For the CN-BoF model the fully connected layers were also
replaced by a Linear BoF layer followed by a 256×2 fully
connected layer. Either 8 codewords (CL-BoF (8)) or 128
codewords (CL-BoF (128)) were used for the Linear BoF
layer. For the CL-BoF (8) a 64×2 fully connected layer
was utilized. During the training process, the input images
were randomly flipped and rotated (up to 10 degrees) with
probability 0.5. The optimization ran for 10,000 iterations
using batch size 16. The last pooling layer was removed
from the CL-BoF model during the test to ensure that an
adequate number of feature vectors are extracted regardless
the used image size.

The proposed CL-BoF model performs better than the
regular CNN model, even when only 8 codewords are used.
Using more codewords, increases the detection accuracy
even more, but also requires slightly more parameters. Even
when 128 codewords are used the total parameters used after
the convolutional layers are reduced by almost two orders
of magnitude, while the total number of parameters in the
network are reduced by 41%.

In the previously conducted experiments the input im-
ages were resized to 224×224 pixels. However, the CL-BoF
is also capable of handling arbitrary sized images without
re-training. This allows for readily adapting the model to
the available computational resources (the time needed for
feed-forwarding the network depends on the size of the

input image). In Table 2, the classification accuracy and
the classification speed is compared for images of various
sizes. A mid-range GPU with 4GB of RAM was used for
the conducted experiments. Feeding smaller images into the
network can greatly reduce the classification time without
significantly harming the classification accuracy. Note that
this was not possible with regular CNN formulations, since
altering the size of the input images also alters the size
of the extracted feature maps (the fully connected layers
can only process inputs of fixed size, in contrast to the
proposed Linear BoF layer). The ability to process images
of various sizes with lower computational cost is especially
important in order to effectively use the secondary low-
resolution cameras of a drone.

4.3. Head Pose Estimation Evaluation

For the head pose estimation evaluation the following
convolutional architecture was used for extracting the feature
vectors. Four convolutional layers (two with 32 3× 3 filters
and another two with 64 3×3 filters), followed by a 2×2
max pooling layer and another four convolutional layers
(two with 128 3×3 filters and another two with 256 3×3
filters) and a 2×2 max pooling layer were utilized. Again,
batch normalization was used after the last convolutional
layer and the rectifier activation function was utilized on
all layers. Both the CNN and the CL-BoF networks were
trained from scratch for 20,000 iterations using batch size
of 32. Two sets of Linear BoF and fully connected layers
were used (one set for tilt estimation and one set for the
pose estimation). The same number of hidden neurons and
codewords as in the concept detection experiments were
used for each set. All the images that were fed to the network
was resized to 48×48 pixels.

The experimental results are reported in Table 3. As
before, using the proposed CL-BoF model reduces the pose
estimation error by more than 25%, while allowing for using
a smaller network (the size of the network is reduced over
75% compared to a regular CNN).

5. Conclusions and Future Work

In this paper a novel fast BoF-based quantization layer
for training and deploying lightweight convolutional neural
networks was proposed. This layer can reduce the size of
CNNs, as well as increase the speed of the feed-forward
process and the classification accuracy. The proposed Linear
BoF can be readily implemented with existing deep learning
tools allowing for easily using the proposed technique, even
with existing pretrained CNNs. The proposed Convolutional



TABLE 3. FACE POSE (PAN AND TILT) EVALUATION

Method # Conv. Params # BoF Params # FC Params # Total Params Accuracy (Pan / Tilt) Error (Pan / Tilt)
CNN 1,172,768 - 4,724,758 5,897,526 68.92% / 61.94% 6.68◦/ 7.05◦
CL-BoF (8) 1,172,768 4,096 2,582 1,179,446 71.72% / 66.23% 5.52◦/ 5.55◦
CL-BoF (128) 1,172,768 65,536 71,702 1,310,006 75.38% / 67.10% 4.60◦/ 5.15◦

Linear BoF model was evaluated using two different drone-
related tasks, i.e., concept detection of humans using the
VOC-2012 dataset and pose (tilt and pan) estimation of
human faces for calculating the optimal shooting angle. It
was experimentally established that the proposed layer can
significantly increase the classification/detection speed and
accuracy, while reducing the total number of parameters
needed for the model.

There are several interesting future work directions.
First, the proposed method can be combined with convo-
lutional object detectors, e.g., [17], to increase their speed
and reduce the size of the deployed models. Also, spatial
pyramid matching schemes similar to [23] can be used
to further increase the accuracy of the model. Finally, the
proposed approach can be extended to learn compact repre-
sentations for various tasks, such as face recognition, using
discriminant autoencoding techniques similar to [24].
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