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Abstract—In this paper, the problem of age estimation is
addressed based on two modalities: speech utterances and
speakers’ face images. The proposed age estimation framework
employs the Shifted Covariates REgression Analysis for Multi-
way data (SCREAM) model, which combines Parallel Factor
Analysis 2 and Principal Covariates Regression. SCREAM is
able to extract a few latent variables from multi-way data and
compute regression coefficients. Initially, biologically inspired
features are extracted from speech utterances and face images
and are suitable feature matrices are created to be fed to
the multi-way SCREAM model. For bimodal age estimation,
the visual and aural features are appropriately combined in a
single matrix for each person. Experimental results demonstrate
the profit of combining the two modalities. The performance
admitted by the multi-way regression for age estimation is also
measured on the benchmark face image dataset FG-NET. The
proposed method is found to be competitive to state-of-the-art
age estimation methods.

I. INTRODUCTION

Automatic human age estimation is a very challenging task
that has attracted great research interest over the years. Age
estimation is useful in fields such as biometrics, security
control and surveillance monitoring, forensics, and electronic
customer relationship management [1]. In this paper, bimodal
age estimation is proposed that is based on both face images
and speech utterances. When both speech and face images
are available, the consideration of both modalities could po-
tentially improve age estimation accuracy, especially if one
of the two modalities provides noisy input. For example,
the combination of aural and visual cues could be useful in
the analysis of video sequences of crime scenes captured by
surveillance cameras/microphones. In such cases, either speech
signals or face images of suspects may be corrupted with
noise or occlusions, hence the combination of speech and face
data could yield better age estimates of the persons appearing
in the video, supporting in that way the process of suspect
identification.

Most existing methods for automatic age estimation exploit
face image information. The release of benchmark FG-NET
Ageing Database [2] in 2004 supported significantly the re-
search on facial age estimation. A comprehensive overview
of research activities in facial age estimation can be found
in [1]. Facial ageing patterns are extracted for automatic age
estimation in [3], while a hierarchical approach is proposed in
[4]. This approach initially performs age group classification
and subsequently, Support Vector Regression (SVR) is applied

to predict the final age. Biologically inspired features (BIFs)
based on Gabor filters are deployed for age estimation in [5].
In [6], a framework for age estimation via face image anal-
ysis is proposed that includes face detection, discriminative
manifold learning, and multiple linear regression.

Many research efforts have focused on speaker age esti-
mation based solely on speech signal. In [7], Gaussian mix-
ture model supervectors are employed as features, weighted-
pairwise principal components analysis is applied for dimen-
sionality reduction and SVR is employed for age regression.
In [8], Linear Discriminant Analysis is performed to reduce
the dimension of i-vectors and SVR is utilized for automatic
age estimation. In [9], speech utterances are modeled using
i-vectors and least squares SVR is applied to estimate the age
of speakers.

This paper extends the work on age interval prediction based
on speech utterances reported in [10]. In [10], Parallel Factor
Analysis 2 (PARAFAC2) [11] was applied to an irregular third-
order tensor for age group classification. Here, a well known
multi-way regression method, namely the Shifted Covariates
REgression Analysis for Multi-way data (SCREAM) [12],
is employed for age estimation. SCREAM is based on a
combination of PARAFAC2 and Principal Covariates Regres-
sion (PCovR). Experiments are conducted for age estimation
based solely on speech, solely on face images, and on both
speech utterances and face images. To this end, the Trinity
College Dublin Speaker Ageing database (TCDSA) [13] is
supplemented with face images of the speakers, which are con-
temporary to their speech recordings. Moreover, experiments
are conducted on the benchmark FG-NET Aging dataset in
order to illustrate better the performance of the proposed age
estimation framework. Experimental results evidently demon-
strate the proposed framework competency in age estimation.

II. DATASETS

The proposed age estimation framework is initially applied
to the longitudinal TCDSA database [13] for speech-based age
prediction. The database contains recordings spanning a year
range per speaker varying between 30 and 60 years at irregular
intervals between 1 to 10 years. The duration of speech
recordings in the TCDSA database varies from 25 seconds
to 35 minutes. The database includes a different number of
recordings per speaker, varying from 4 to 47 recordings per



speaker. The total number of speakers included in the TCDSA
dataset is 26, including 15 males and 11 females.

In order to perform bimodal age estimation, face images
were collected for each speaker of the dataset by locating
publicly available visual material portraying him/her. Effort
has been devoted so that the face images were captured close
to the speakers’ age. Since the exact matching is difficult, a
3-year tolerance is allowed between the age of a person when
his/her face was captured and the age associated to his/her
utterance. Such a 3-year tolerance is not expected to affect
the exactness of speech and face image matching due to the
gradual progression of ageing process.

A total duration of 30 seconds is kept from each recording
or less if the recording’s duration is shorter than 30 seconds.
If many face images of the person at the age of the speech
recording have been collected, more than one segments of
30 seconds long are kept. A total of 227 recordings could
be matched with contemporary face images. Finally, the total
number of speakers included in the extended TCDSA audio-
visual dataset was 25, including 14 males and 11 females.

The collected face images were resized to 60 × 60 pixels
and the face was cropped in order to remove background. All
face images were converted to grayscale. Some examples of
the collected face images for four speakers of the extended
TCDSA dataset are depicted in Figure 1. Pose and illumination
vary greatly over the collected face images, as can be observed
by the sample face images depicted in Figure 1. To the best
of our knowledge, the extended TCDSA dataset that combines
age separated speech samples and face images, is a unique
dataset that supports bimodal age estimation experiments using
aural and visual features.

Fig. 1. Face images depicting four speakers of the extended TCDSA dataset
at ascending ages.

A second set of experiments was conducted on the FG-
NET benchmark dataset, which comprises of 1002 face images
that belong to 82 unique persons (48 male and 34 female) at
various ages [2]. Similar to the TCDSA database, face images
were resized to 60 × 60 pixels and the face was cropped in
order to remove background.

III. PROPOSED METHOD

The proposed framework treats age estimation problem as a
regression problem. Here, our goal is to exploit the multi-way

regression method SCREAM [12] for age estimation. The first
step is to perform feature extraction from speech utterances
and face images in order to obtain discriminative feature rep-
resentations. The SCREAM regression model requires multi-
way data, therefore the features extracted from face images
and speech utterances need to be re-arranged in matricized
form. The second step includes the training of a SCREAM
regression model on speech and face image feature matrices in
order to estimate age. For bimodal age estimation, the speech
and face image feature matrices are appropriately combined
in a single matrix, which is subsequently fed to a SCREAM
regression model.

A. Feature extraction

Auditory cortical representations are extracted from speech
utterances. These descriptors are inspired by the way sound
is perceived and processed by the human auditory system
[14]. Auditory cortical representations are actually a four-
dimensional (4D) representation of time, frequency, rate,
and scale. The auditory cortical representations extracted for
each frame are averaged across time and the resulting 3D
representations for each speech recording are obtained (fre-
quency channels × rates × scales). By appropriately unfolding
the 3D representation across frequency dimension, a matrix
X1 ∈ R(rates×scales)×frequency channels

+ is obtained. Follow-
ing [15], 10 rates, 6 scales and 128 filters are employed, which
cover 8 octaves between 44.9 Hz and 11 kHz. Therefore, each
speech recording is represented by a matrix X1 ∈ R60×128

+ .
BIFs are extracted from each face image following the

procedure for human age estimation proposed in [5]. These
features are actually a pyramid of Gabor filters and are similar
to the way the human visual system processes visual stimuli.
In total, 8 bands and 12 orientations were chosen for the
applied Gabor filters. For each scale band, the pooling grids
are 6 × 6, 8 × 8, 10 × 10, 12 × 12, 14 × 14, 16 × 16,
18 × 18, and 20 × 20, respectively. Moreover, the allowed
overlaps for each pooling grid are 3, 4, 5, 6, 7, 8, 9, and
10, respectively. Each scale band has a pair of adjacent filter
sizes, therefore two maps are obtained for each orientation:
one for each filter. The maximum operation “MAX” is used
as a pooling filter on the two maps and the maximum map
is obtained. In addition to the “MAX” pooling, a nonlinear
standard deviation operation (“STD” operation) is proposed
in [5] in order to capture the local variations of ageing. The
“STD” operation is applied on the maximum map using the
band’s pooling grid. From the aforementioned procedure, a
total of 1099 values are obtained for each orientation across
bands for each 60×60 pixel image. More specifically, 20×20
values are obtained for the first band which has a 6×6 pooling
grid and an overlap of 3, 15× 15 values are obtained for the
second band which has an 8× 8 pooling grid and an overlap
of 4, and so on. The 1099 feature values obtained for each
orientation are arranged as the matrix of dimension 20 × 87
depicted in Figure 2. The remaining 641 entries in each matrix
that do not correspond to feature values are filled with zeros. In
total, 12 such matrices are created, one for each orientation.



Subsequently, the matrices are concatenated horizontally to
yield a single matrix X2 ∈ R20×1044

+ for each face image.
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Fig. 2. BIFs across the 8 bands for one orientation.

In order to perform bimodal age estimation, the speech and
face image feature matrices are suitably merged in a single
matrix, which is subsequently fed to SCREAM regression
model. More specifically, the speech feature matrix and the
face image feature matrix are concatenated in a block diagonal
matrix X3 ∈ R80×1172

+ .

B. SCREAM-based multi-way regression

SCREAM is a multi-way regression method proposed in
[12]. The method is a combination of PARAFAC2 decom-
position and PCovR. SCREAM employs PARAFAC2 to de-
compose a multi-way data matrix X and PCovR to compute
regression coefficients by minimizing a unified least squares
criterion. PARAFAC2 is a multi-way generalization of the
Singular Value Decomposition (SVD), which can be applied to
a collection of matrices having the same number of columns,
but different number of rows [16]. PARAFAC2 assumes a
common latent structure in the input tensor X and performs
dimensionality reduction by extracting latent variables. By
combining PARAFAC2 with PCovR, a regression model,
coined as SCREAM, has been developed that is able to provide
latent variables useful for predictive models.

The proposed framework exploits the multi-way regression
model SCREAM for age estimation. A SCREAM model
is trained on a three-way array X ∈ RI×J×K , where K
is the number of samples. The kth sample is denoted by
Xk ∈ RI×J . For the proposed age estimation framework,
each sample matrix Xk corresponds to the matricized feature
representations of speech recordings and face images. More
specifically, for age estimation based solely on speech, the
speech feature matrices X1 ∈ R60×128

+ are combined in a
three-way array X1 ∈ R60×128×K

+ , where K is the number
of speech recordings. For age estimation based solely on
face images, the face image feature matrices are combined
in a three-way array X2 ∈ R20×1044×K

+ . Finally, for bimodal
age estimation, the three-way array X3 ∈ R80×1172×K

+ that

combines speech and face image feature representations is
utilized.

The SCREAM model combines the loss function of
PARAFAC2 decomposition with the loss function of a re-
gression model into a single optimization problem. A scalar
parameter α, 0 ≤ α ≤ 1, is utilized to compensate between the
goodness of fit of the decomposition of X and the error of the
regression of y ∈ RK×1

+ . The vector y comprises the person
ages. During the training phase, the ground truth person ages
are the elements of y. During the test phase, y contains the
predicted ages returned by the SCREAM model. That is, y is
the dependent regression variable of the SCREAM model. The
SCREAM model seeks a solution to the optimization problem:

argmin
C, P, r

α‖X−CP
ᵀ‖2F + (1− α)‖y −Cr‖22. (1)

The first term of loss function (1) is actually the loss function
of PARAFAC2:

K∑
k=1

(Xk −ADkB
ᵀ
k)

2 = ‖X−CP
ᵀ‖2F (2)

where X ∈ RK×IJ
+ holds the appropriately unfolded three-

way array X ∈ RI×J×K
+ and P is a matrix holding the

matrices A and Bk appropriately arranged. A ∈ RI×F is the
first mode loadings of an F -component PARAFAC2 model,
where F is the number of latent variables extracted. The
diagonal matrix Dk ∈ RF×F

+ holds the kth row of the third
mode loadings C ∈ RK×F . The third mode is the sample
mode. The matrix Bk ∈ RJ×F is the loadings for second
mode for sample k. To achieve uniqueness, the square matrix
Bᵀ

kBk = H is kept constant over k [11]. The second term of
loss function (1) is actually the regression error:

‖y −Cr‖22 (3)

where r ∈ RF×1 is a vector of regression coefficients.
The matrix C ∈ RK×F is used concurrently for fitting the
PARAFAC2 model of X and for the regression problem of
predicting y. Therefore, it integrates the two minimization
objectives. In order to ensure that the components of C are
relevant for prediction, it is expressed as C = XW, where
W ∈ RIJ×F is a weight matrix that ensures that C is in the
row-space of X.

Here, the SCREAM model is utilized for age estimation. By
solving the optimization problem (1), a reduced dimension
representation model of the three-way feature array X is
obtained and concurrently a regression for age prediction is
performed. SCREAM is a powerful regression technique and
to our knowledge, it is the first time that it is exploited for
age estimation.

IV. EXPERIMENTAL EVALUATION

In order to assess the performance of the proposed frame-
work in age estimation, experiments were conducted on the
audio-visual TCDSA and the facial FG-NET datasets, de-
scribed in detail in Section II. During the evaluation, the



Leave-One-Person-Out (LOPO) evaluation protocol was ap-
plied. Successively, the observations (speech recordings and
face images) of each speaker were included into the test set,
while the observations belonging to the remaining speakers
of the dataset were used for training. LOPO defines M = 25
folds in the audio-visual TCDSA dataset, one for each person.
Similarly, M = 82 folds were defined in the FG-NET dataset.

Since the audio-visual TCDSA dataset consists of 227
recordings and each speech feature matrix X1 has dimension
60 × 128, the 227 samples formulate the three-way speech
feature matrix X1 ∈ R60×128×227. The three-way face image
feature matrix X2 ∈ R20×1044×227 and the combined feature
matrix X3 ∈ R80×1172×227 are formulated. For the FG-NET
dataset, only the face image modality is available, therefore the
SCREAM-based age estimation framework is only applied to
the three-way face image feature matrix X2 ∈ R20×1044×1002,
where K = 1002 the number of face images.

The Mean Absolute Error (MAE) was employed as a re-
gression metric to assess the estimations made by the proposed
method. MAE is the average of the absolute errors between
the predicted age value and the actual age value. A range of
different values for the number of latent variables F extracted
by SCREAM and the parameter α were tested in order to find
the most suitable values for each dataset.

The best MAE for the proposed age estimation framework
in several experiments on the TCDSA dataset is summarized
in Table I. Here, the modality exploited in each experiment
is denoted as either speech, image or speech+image. For the
speech modality, only aural features were utilized and the
speech feature matrices were fed to the SCREAM model.
Similarly, for image and speech+image modalities, only face
feature matrices and combined speech and face feature ma-
trices are utilized, respectively. The parameter values for the
results presented in Table I are α = 0.6 and F = 1 for
the speech modality, α = 0.9 and F = 2 for the image
modality, and α = 0.8 and F = 1 for the speech+image
modality. It is seen from Table I that the best performance
on age prediction was achieved based on the combination of
speech and face image modalities. In addition, the proposed
age estimation framework yielded a better MAE when it was
based exclusively on speech features rather than when it was
based exclusively on face image features.

TABLE I
MAE (YEARS) AT DIFFERENT AGE GROUPS ON TCDSA DATASET USING

DIFFERENT MODALITIES.

Age estimation results - TCDSA
Range #records Speech Image Speech+Image
21-29 31 24.03 25.63 15.65
30-39 28 15.64 16.22 11.28
40-49 38 7.52 7.03 8.12
50-59 47 4.87 6.95 8.96
60-69 40 10.45 10.57 11.19
70-79 29 18.48 17.15 16.44
80-89 14 28.48 24.76 31.33
Total 227 13.44 13.70 12.75

In order to examine whether the proposed age estimation
framework is robust to noise corruption, we conducted the
same experiments presented in Table I having added car
idle noise to the speech recordings [17]. The experimental
findings after the addition of noise to the speech recordings are
presented in Table II. As expected, the MAEs for speech-based
and bimodal age estimation have been increased, but bimodal
age estimation still outperforms speech-based age estimation.
Therefore, the inclusion of the face image modality increases
the robustness of the bimodal age estimation framework.
Interestingly, bimodal age estimation outperforms image-based
age estimation, despite the addition of noise to the speech
recordings. The ability of the proposed bimodal age estimation
framework to deal effectively with noisy input of one modality
is noteworthy, since in most real life applications involving
audio and visual input, one of the two modalities is likely to
be corrupted with noise.

TABLE II
MAE (YEARS) AT DIFFERENT AGE GROUPS ON TCDSA DATASET USING

DIFFERENT MODALITIES AFTER THE ADDITION OF NOISE TO SPEECH
RECORDINGS.

Age estimation results - TCDSA
Range #records Speech Image Speech+Image
21-29 31 24.87 25.63 24.76
30-39 28 15.75 16.22 15.41
40-49 38 6.61 7.03 6.03
50-59 47 4.38 6.95 3.86
60-69 40 11.5 10.57 11.16
70-79 29 19.57 17.15 18.66
80-89 14 27.85 24.76 27.5
Total 227 13.60 13.70 13.13

The best MAE for the proposed age estimation framework
in several experiments on the FG-NET dataset is summa-
rized in Table III. Here, only the face modality is available,
therefore only face image-based age estimation is performed.
The parameter values of the proposed method for the results
presented in Table III are α = 0.4 and F = 3. From
Table III, it is seen that the proposed method performance
on age estimation is promising, when compared to other
age estimation techniques applied to the benchmark FG-NET
dataset.

TABLE III
MAE (YEARS) AT DIFFERENT AGE GROUPS ON FG-NET DATASET.

Age estimation results - FG-NET
Range #records Proposed BIF [5] RUN [18] QM [19] MLP [19]

0-9 371 6.78 2.99 2.51 6.26 11.63
10-19 339 5.40 3.39 3.76 5.85 3.33
20-29 144 6.73 4.30 6.38 7.10 8.81
30-39 79 10.52 8.24 12.51 11.56 18.46
40-49 46 17.69 14.98 20.09 14.80 27.98
50-59 15 28.04 20.49 28.07 24.27 49.13
60-69 8 38.09 31.62 42.50 37.38 49.13
Total 227 7.67 4.77 5.78 7.57 10.39



V. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed age estimation by employ-
ing the multi-way regression method SCREAM. SCREAM is
utilized for age prediction based on speech recordings and
face images. Biologically inspired features are extracted from
speech utterances and face images and are suitably arranged
to feature matrices so that they can be fed to the multi-
way SCREAM model. Moreover, the aural and visual feature
matrices are combined in a single matrix, enabling bimodal
age estimation using SCREAM. Experimental results on the
audio-visual TCDSA dataset demonstrate that the proposed
age estimation framework achieved its best performance when
both modalities were utilized. The age estimation based solely
on speech is slightly more accurate than that based solely on
face images. Experiments on the benchmark FG-NET dataset
demonstrate that the proposed age estimation framework per-
formance is competitive to other age estimation techniques.
The proposed method possesses a unique advantage than the
state-of-the-art techniques: it depends of few parameters (i.e.,
2-3 latent variables and another 2-3 regression coefficients),
which makes it a first candidate for big data applications if
properly implemented. Future work will focus on expanding
the SCREAM model so that it allows the integration of
information from two modalities directly into (1) and solving
the resulting optimization problem.
Acknowledgments. The authors are grateful to Dr. F. Kelly
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