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Abstract. Among the most crucial components of an intelligent system
capable of assisting drone-based cinematography is estimating the pose
of the main actors. However, training deep CNNs towards this task is not
straightforward, mainly due to the noisy nature of the data and instabil-
ities that occur during the learning process, significantly slowing down
the development of such systems. In this work we propose a temporal
averaging technique that is capable of stabilizing as well as speeding up
the convergence of stochastic optimization techniques for neural network
training. We use two face pose estimation datasets to experimentally
verify that the proposed method can improve both the convergence of
training algorithms and the accuracy of pose estimation. This also re-
duces the risk of stopping the training process when a bad descent step
was taken and the learning rate was not appropriately set, ensuring that
the network will perform well at any point of the training process.
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1 Introduction

Unmanned Aerial Vehicles (UAVs), or drones, are capable of capturing spec-
tacular aerial shots of various events, e.g., athletic events, concerts, etc., that
would be otherwise difficult and expensive to obtain. This has led many media
producers to use drones to film outdoor events instead of resorting to other more
established, yet expensive means, such as hiring a helicopter and a crew to film
the aerial shots. However, flying a drone in a professional filming setting requires
at least two operators. The first one is responsible for controlling the flight path
of the drone and avoiding possible hazards, while the second one for controlling
the main shooting camera. Assisting parts of the flying and the shooting process
using machine learning techniques, such as deep neural networks [11], and rein-
forcement learning techniques [14], has the potential to reduce the load of the
human operators, increasing the quality of the captured shots and reducing the
cost of the film productions.



Among the most crucial components of an intelligent system capable of as-
sisting the filming process is estimating the pose of the main actors. For example,
consider the problem of controlling the camera during a bicycle race event. After
detecting a bicycle the drone must rotate its camera towards the bicyclist. To
this end, the face pose, i.e., tilt and pan, of the bicyclist must be estimated in
order to calculate the appropriate shooting angle according to the specifications
of each shot type. Simple computer vision methods can be used to tackle this
problem [24]. However, with the advent of deep convolutional neural networks
(CNNs) it was established that it is possible to train CNNs capable of perform-
ing pose estimation significantly better than the conventional pose estimation
methods [23].

Note that training deep CNNs is not always a straightforward task, slowing
down the development of such systems. Several methods have been proposed to
stabilize and smoothen the convergence of the training procedure [5], [6], [7], [9],
[22]. During our experiments we also observed instabilities during the training
process, even though a state-of-the-art stochastic optimization technique, the
Adaptive Moment Estimation method (ADAM) [9], was used. If a slightly larger
learning rate than the optimal was selected the training process was unstable. On
the other hand, if the learning rate was too small, the optimization process slowed
down significantly. Furthermore, the unstable behavior of CNNs used for pose
estimation can be also partially attributed to the noisy nature of the data. After
detecting a face using an object detector, such as the YOLO detector [19], or the
SSD detector [13], the bounding box of the face is cropped, resized and then fed
to the pose estimation CNN. However, the object detector is usually incapable
of perfectly centering and determining the bounds of the face introducing a
significant amount of noise into the aforementioned process.

The main contribution of this work is the proposal of a temporal averaging
technique that is capable of stabilizing as well as speeding up the convergence
of stochastic optimization for neural network training. The proposed technique
uses an exponential running average on the parameters of the neural network to
bias the current parameters towards a stabler state. As we show in Section 3,
this is equivalent to first taking big descent steps to explore the solution space
and then annealing towards stabler states. It was experimentally verified using
two face pose estimation datasets that the proposed method can improve both
the convergence of the utilized training algorithms and the accuracy of pose
estimation. The more stable convergence of the algorithm also reduces the risk
of stopping the training process when a bad descent step was taken and the
learning rate was not appropriately set, ensuring that the network will perform
well at any point of the training process (after a certain number of iterations
have been performed).

The rest of the paper is structured as follows. First, the related work is briefly
introduced and discussed in Section 2. Then, the proposed method is presented
in detail in Section 3 and the experimental evaluation is provided in Section 4.
Finally, conclusions are drawn and future work is discussed in Section 5.



2 Related Work

Several methods have been proposed for training deep neural networks as well as
for improving the convergence of stochastic gradient descent. For example, using
batch normalization [7], rectifier activation units [5], and residual connections
[6], [22], allows for effectively dealing with the problem of vanishing gradients.
Furthermore, advanced optimization techniques, such as the ADAGRAD algo-
rithm [1], and the ADAM algorithm [9], adjust the learning rate for each pa-
rameter separately effectively dealing with gradients of different magnitudes and
allowing for improving the convergence speed. Each of these techniques deal with
a specific problem that arises during the training of deep neural networks. The
method proposed in this paper is complementary to these methods since it ad-
dresses a different problem, i.e., improves the stability of the training procedure
regardless of the selected learning rate. This is also demonstrated in Section 4
where the proposed method is combined with some of the aforementioned meth-
ods to improve the convergence speed and the stability of the training process.

Parameter averaging techniques were also proposed in some works to deal
with the noisy stochastic updates of gradient descent [18], [20], where after com-
pleting the training of the neural network the weights of the network are replaced
with the average weights, as calculated during the training process. A more de-
liberate technique was proposed in [9], where an exponential moving average
over the parameters of the network is used to ensure that higher weight is given
to the recent states of the network. A similar approach is also adopted for deep
reinforcement learning tasks [12]. The method proposed in this paper is different
from the method proposed in [9], since the weights of the network are not aver-
aged after each iteration. Instead, a number of descent steps are taken, e.g., 10
optimization steps, and after them the parameters of the networks are updated.
This allows for better exploring the solution space and increasing the conver-
gence speed, while maintaining the stability that the averaging process offers, as
demonstrated in Section 4.

3 Proposed Method

In this Section the used notation is introduced and the proposed Long-Term
Temporal Averaging (LT-TA) algorithm is presented in detail. Then, we exam-
ine the behavior of the LT-TA algorithm by analyzing the proposed parameter
update technique.

Let 6 denote the parameters of the neural network that is to be optimized
towards minimizing a loss function £. The notation 6; is used to denote the
parameters after ¢ optimization iterations. Also, let f(6,2z,n) be an optimization
method that provides the updates for the parameters of the neural network,
where x is the training data and 7 the hyper-parameters of the optimization
method, e.g., the learning rate. Any optimization technique can be used rang-
ing from the simple Stochastic Gradient Descent method [4], to more advanced
techniques, such as the ADAM method [9].



Algorithm 1 Long-Term Temporal Averaging Algorithm

Input: A training set of data X, the initial parameters of the network @y, and an
optimization method f(-) along with its hyper-parameteres n
Parameters: the target update rate a, the update rate decay m, the exploration
window Ng, and the number of iterations N
Output: The optimized parameters
1: procedure PAST ALGORITHM
epast +— bo
fort+ 1;t < N;t++ do
Sample a batch x from X
0r f(et—lvxvn)
if mod (¢, Ns) =0 then
Q4 Qoo + (1 — aco) exp(—m(t/Ns))
Opast < abt + (1 — @)bpast

et — Opast
return 0pqst

The proposed method is shown in Algorithm 1. The proposed algorithm
keeps track of a exponentially averaged version of the parameters of the net-
work denoted by 60,4s:. These parameters are initially set to the current state of
the network (line 2) and represent the stable state of the network. During the
optimization (lines 3-5) the proposed algorithm performs regular optimization
updates (line 5). However, every Ng iterations the current weights of the network
are annealed towards the previous (past) stable state Opqs:. As we demonstrate
later in this Section this is equivalent to performing large exploration descent
steps during the Ng iterations and then slowing down the learning in order to
update the stable version of the network. The rate a, used for the updating the
stable parameters of the network (line 8), is determined using an exponential
decay strategy (line 7). During the initial iterations less weight is given to the
past state of the network, since usually we start with a randomly initialized
neural network. However, as the optimization progress the past weights of the
network converge towards their stable state. Therefore, the update rate is de-
cayed towards a.,. For all the conducted experiments, a, is set to 0.5, while
the decay rate m is set to 1073. Thus, for the initial iterations the update rate
is close to 1, while as the training procedure converges it is slowly decayed to
0.5. After the performing N iterations the algorithm returns the stable version
of the optimized parameters 0pqs:.

To better understand how the proposed algorithm works consider the first Ng
iterations when the simple stochastic gradient descent algorithm with learning



rate 7 is used to provide the optimization updates:
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It is easy to see that after Ng optimization steps the weights of the network can
be expressed as a weighted sum over the descent steps:
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since Opqst = 6. After these iterations the exponentially averaged copy of the
parameters of the network is updated (line 8 of Algorithm 1) as:
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Therefore, updating the exponentially averaged copy of the parameters 0,44 is
equivalent to lowering the learning rate of the previous updates to an while
updating the parameters 6p,,5:. However this is not equivalent to performing
optimization with the lowered learning rate. To understand this note that the
intermediate states 01,0,,...,0n, are calculated using the original learning rate
7 instead of the lowered rate an:

oL
0; =0;—1 — 56, (4)

That is, during the Ng steps the proposed algorithm explores the solution space
by taking large steps towards the descent direction, while the stable state 0pqs:
is updated using a lowered learning rate. This increases the convergence speed,
while ensuring that relatively large descent steps that overshoot the local minima
will not significantly affect the stability of the training procedure.

4 Experiments

Two datasets were used to evaluate the proposed method: the Annotated Facial
Landmarks in the Wild dataset (AFLW) [10], and the Head Pose Image Dataset
(HPID) [3]. The Annotated Facial Landmarks in the Wild (AFLW) dataset [10],



is a large-scale dataset for facial landmark localization. The 75% of the images
were used to train the models, while the rest 25% for evaluating the accuracy
of the models. The face images were cropped according to the supplied anno-
tations and then resized to 32 x 32 pixels. Face images smaller than 16 x 16
pixels were not used for training or evaluating the model. Some examples of
cropped images are shown in Figure 1. The Head Pose Image Dataset (HPID)
[3] is a smaller dataset that contains 2790 face images of 15 subjects in various
poses taken in a constrained environment. Some sample images are shown in
Figure 2. Again, all images were resized to 32 x 32 pixels before feeding them to
the used CNN. For both datasets the horizontal pose (pan) is to be predicted.
The AFLW dataset provides continuous pose targets, while the HPID dataset
provides discrete targets (13 steps).
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Fig. 1. Cropped face images from the ALFW dataset
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Fig. 2. Cropped face images from the HPID dataset

During the training the following data augmentation techniques were used:

1. random vertical flip with probability 0.5
. random horizontal shift up to 5%
3. random vertical shift up to 5%
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4. random zoom up to 5%
5. random rotation up to 10°

The vertical and horizontal shifts simulate the behavior of face detectors that are
usually unable to perfectly align the face in the images, while the zooming and
the rotation transformations increase the invariance of the network to various
shooting specifications.

Deploying a deep learning model on a drone with limited processing and
memory resources imposes significant restrictions on the complexity of the model.
To this end, a lightweight CNN with less than 300K parameters is used. The ar-
chitecture of the used deep convolutional neural network is shown in Table 1.
Local contrast normalization (LCN) is used after each of the two convolutional
blocks [8], while the dropout technique is used to regularize the learning pro-
cess [21]. Finally, the ADAM algorithm [9], with learning rate n = 0.001, and
the default hyper-parameters (81 = 0.9 and 85 = 0.999) is used for optimizing
the network using mini-batches of 32 samples.

Table 1. Architecture of the used CNN

Layer Type Output Shape
Input 32x32x3
Convolutional (3 x 3) 30 x 30 x 16
Convolutional (3 x 3) 28 x 28 x 16
Max Pooling (2 x 2) 14 x 14 x 16
LCN + Dropout (p =0.5) 14 x 14 x 16
Convolutional (3 x 3) 12 x 12 x 32
Convolutional (3 x 3) 10 x 10 x 32
Max Pooling (2 x 2) 5 x5 x 32
LCN + Dropout (p = 0.5) 5x5x 32
Dense 256
Dense 1

First, the ALFW dataset is used to evaluate the proposed method. The
results are shown in Table 2. The proposed Long-Term Temporal Averaging
method (abbreviated as LT-TA) outperforms both the plain Temporal Averaging
(abbreviated as TA), as well as the baseline learning technique, i.e., using only
the ADAM algorithm without any temporal averaging. For both the TA and the
LT-TA techniques the weight update parameter is exponentially decayed to 0.5
(Algorithm 1). The proposed LT-TA method reduces both the training and the
testing mean angular error as well as it stabilizes the learning process by reducing
the error deviation during the last training iterations (the train error deviation
during the last 5,000 iterations is reported). These results are also confirmed by
the learning curve depicted in Figure 3, where the mean angular error during the
training process is ploted. Note how the proposed LT-TA method stabilizes the



convergence of the training process (the error spikes are significantly reduced).
Using a smaller learning rate can also have similar effect, but it also slows down
the convergence.

The evaluation results for the HPID dataset are reported in Table 3. Again,
the proposed method reduces both the train and the test error, while reducing
the instabilities of the algorithm during the training process (the deviation is
reduced from 0.21 to 0.11). This is also confirmed by the learning curves shown
in Figure 4, where the LT-TA method reduces the fluctuations of the error
(especially in the last iterations).

Table 2. ALFW Dataset Evaluation: Comparing the proposed Long-Term Temporal
Averaging (LT-TA) method to the plain Temporal Averaging (TA) and the baseline
learning methods. The mean angular error is reported. The train error deviation refers
to the error deviation during the last 5,000 iterations.

Method‘Train Error Train Deviation‘ Test Error

Baseline 7.41 0.32 8.16
TA 7.24 0.18 8.01
LT-TA 6.98 0.17 7.72

Table 3. HPID Dataset Evaluation: Comparing the proposed Long-Term Temporal
Averaging (LT-TA) method to the plain Temporal Averaging (TA) and the baseline
learning methods. The mean angular error is reported. The train error deviation refers
to the error deviation during the last 5,000 iterations.

Method"I&‘ain Error Train Deviation‘ Test Error

Baseline 4.57 0.21 5.99
TA 4.02 0.21 5.89
LT-TA 3.63 0.11 5.74

5 Conclusions

In this work we proposed a Long-Term Temporal Averaging technique that first
takes big descent steps to explore the solution space and then uses an exponential
running average on the parameters of the neural network to bias the current
parameters towards stabler states. The more stable convergence of the algorithm
also reduces the risk of stopping the training process when a bad descent step
was taken and the learning rate was not appropriately set, ensuring that the
network will perform well at any point of the training process (after a certain
number of iterations have been performed). It is demonstrated, using two face
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Fig.3. ALFW Dataset Evaluation: Comparing the mean angular error during the
training process
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image dataset for pose estimation, that the proposed technique is capable of
stabilizing as well as speeding up the convergence of stochastic optimization
techniques for neural network training.

There are several interesting future research directions. First, the proposed
technique can be evaluated under a wider range of learning scenarios, e.g., differ-
ent learning rates, network architectures, datasets, etc. This also includes several
other tasks that are needed for intelligent drone-based cinematography, such as
face recognition [2], [16], and learning compact representations [15], [17], that can
be used to develop lightweight models for tasks running on-board. Furthermore,
the update rate for the exponentially averaged parameters can be dynamically
determined. For example, the relative change of the loss function can be used to
adjust the update rate, or second order statistics can be also taken into account,
similar to [9].
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