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ABSTRACT

Here, we are interested in the case where a randomly chosen sub-
set of agents share deliberately with their neighbors local informa-
tion corrupted with gross errors, which is a common phenomenon in
strategic communication. Within this framework, we propose a two-
fold extension of the state-of-the-art diffusion adaptation techniques
over mobile networks. First, the agents apply the block least mean
squares algorithm exploiting a limited memory of prior regression
vectors and prior estimates of distance to the target in the time do-
main. Second, the agents estimate the combination weights based
on negative exponentials of the scaled distance of intermediate loca-
tion estimates within their neighborhood from the marginal median
of these estimates in the spatial domain. The experimental learning
curves demonstrate that, at the expense of some additional computa-
tional requirements, the enhanced adapt-then-combine (ATC) diffu-
sion strategy can cope with the outliers and yield better results than
the standard ATC strategy.

Index Terms— Adapt-Then-Combine, diffusion, marginal me-
dian, block least mean squares, strategic communication

1. INTRODUCTION

Adaptive networks [1] constitute a class of dynamical networks
whose understanding has enabled researchers to decode several phe-
nomena emerging in a broad range of applications not limited to
the engineering domain, but extending to social science as well [2].
Nearly all real world networks are adaptive to some extent, be-
cause dynamical changes of their state and the underlying network
topology take place, enabling self-organization.

Diffusion adaptation techniques incorporate the real-time coop-
eration of the nodes and the diffusion of information among them.
These approaches have been applied to model complicated patterns
of comportment detected in the biological networks, such as bird
flight formations [3], trail formation of ants or the foraging behav-
ior of fish schools [4], where fishes proceed in extraordinary con-
sistency, speed similarity, ensuring a safe distance from their neigh-
borhood in order to avoid collisions. Cooperation between agents
can enhance network attitude due to a) the sharp quality distinction
of information obtained by each agent; b) the inadequate informa-
tion possessed by some agents rendering them unable to convalesce
the ambiguity. On the other hand, link failures can discombobulate
adaptation and the learning capabilities of the network, provoking
limited or even deterrent cooperation between the agents. In either
case, it has been proven that node cooperation outperforms the case
when no cooperation takes place among network nodes [5]. In these
instances, each node acquires estimates from its neighbourhood and
finally employs a specific combination of them.

Diverse strategies of cooperation have been developed. For ex-
ample, diffusion techniques, which are single time-scale implemen-
tations, such as the Adapt-Then-Combine (ATC) techniques, where
information exchange takes place followed by aggregation [4] and
the Combine-Then-Adapt (CTA) techniques, where aggregation pre-
cedes the information exchange [6]. A unifying general diffusion
model, whose special cases are ATC and CTA was also developed
[7]. Within the context of ATC, a distributed adaptive algorithm for
sparsity-aware learning was proposed in [8]. Alternatively, consen-
sus techniques can be used where all agents shall attain identical
consensus state that ensures equipoise [9], [10], [11]. The initial
consensus implementations were based on the adoption of two time-
scales [12], [13], one for measurements assortment and one for the
equilibrium fulfillment, preventing, however, the real-time adapta-
tion process. Latter approaches were single time-scale [14], [15]
and were based on distributed optimization [9].

Here, we are interested in strategic communication in which
agents must decide what to say to others and how to react to what
others say to them [2]. It has been found that communication ex-
pands the behavior of agents yielding new and potentially produc-
tive forms of interaction to prevail. For example, evolving automata
were used to model endogenous, strategic communication in [16].
By allowing the agents to exchange communication tokens prior
to playing a single-shot Prisoner’s Dilemma game, where defection
was the dominant strategy, occasional outbreaks of cooperation be-
tween agents had emerged. By applying the identical framework to
a game of coordination (e.g., the Stag Hunt game), communication
had proven beneficial as well [17]. In the aforementioned studies, the
critical parameter of interest in models of strategic communication
is the amount of processing power of the agents.

Motivated by the seminal work on diffusion networks by Ali H.
Sayed and his colleagues, who have demonstrated that diffusion net-
works are more stable, converge faster and demonstrate lower mean-
square deviation than consensus ones [6, 18], we build on the work
on mobile adaptive networks [4], aiming at shedding light on their
performance within a framework of strategic communication. In par-
ticular, we assume that a randomly chosen subset of agents share
deliberately very noisy information with their neighbors. We allow
the agents (i) to possess a limited memory of prior regression vec-
tors and prior estimates of distance to the target in the time domain
so that a block least mean squares (LMS) is applied and (ii) to esti-
mate the combination weights based on negative exponentials of the
scaled distance between the intermediate location estimates within
their neighborhood and their marginal median in the spatial domain.
In summary, the contributions of the paper are threefold: 1) The
development of three novel diffusion algorithms for mobile adap-
tive networks, employing either block LMS, or the aforementioned



combination weights, or the combination of both techniques; 2) The
detailed demonstration of the proposed algorithms merits against the
state-of-the-art algorithm [4]; 3) The study of the impact of various
parameters in the performance of the proposed algorithms.

The remainder of this paper is structured as follows: An
overview of the state-of-the-art diffusion algorithm for a mobile
adaptive network, proposed in [4], is presented in Section 2. The
developed algorithms are detailed in Section 3. Section 4 discloses
experimental evidence for the advantages of the proposed algorithms
against the standard ATC diffusion strategy. Finally, Section 5 con-
cludes the paper and indicates future research directions.

2. MOBILE ADAPTIVE NETWORKS

Let N be the number of agents in a network. The k-th agent, repre-
sented as a node of a mobile network, updates its location from Xy, ;
to Xk, i+1 using

Xp,it1 = Xk,i + At Ve i1 (D)

where At is a time step and vy ;41 is its updated velocity. The veloc-
ity of the k-th agent vy ;11 should ensure that: 1) the agent moves to
locations of higher SNR; 2) the agent moves towards the target w';
3) the agent moves in coordination with its neighbors; 4) collisions
between agents are avoided. The first objective is fulfilled if the net-
work of agents moves in a direction that reduces Z,ivzl o2 (i), where
o2 (i) is the noise variance estimated by the k-th agent at its location
at time ¢. This can be achieved by means of [4]:
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where N, ; is the neighborhood of node & at time ¢ and ||-|| denotes
the /> norm. To meet the second objective, the location of the center
of mass of the network at time ¢ defined as x{ = % ch\;l Xk,i
should converge toward w°. This can be achieved if v;, ;11 points to
the direction w® — Xk, [4], i.e.,
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where the positive scaling factor s bounds the speed in pursuing
the target. Since w® is unknown, one replaces w° by a proper esti-

mate Wy, ;. Letdy,; = ZleNkvi\{k} (%1, = Xpall = 1) ﬁ’

where 7 is the safe distance to be respected by each agent from its
neighbors to avoid collisions. The third and the fourth objectives,
i.e., the coordinated movement of the mobile network and the avoid-
ance of agents collisions is achieved by [4]:

" 1
Viitl = VZJ- + N Ok, 4)
where VZ7 ; 1s an appropriate local estimate of the velocity of the cen-

ter of mass of the network v; = % Zi\le Vk,i- By combining (2)-
(4), the following update of the velocity vector is proposed in [4]:

Viidl = Ah(Wii — Xpi) + o Hg’”H +BVL i +v0ki (5
ki

for non-negative weighting factors A, a, 3, and ~y. To prevent singu-
larities, ﬁ £ 0 whenever x = 0.

In (5), distributed local estimates of the target location wy, ; and

the velocity of the center of the gravity VZ,Z- need to be specified.
Let us suppose that at every time instant ¢, every node has access
to a scalar measurement dy(¢) from a random process d, (¢) and a
(column) regression vector uy ; of size M = 2 from another ran-
dom process u, , related via d, (i) = gf’iwo + n, (i), where n, (4)
is a zero mean white random process independent of all other pro-
cesses. The regression vector uy; = (cos 0 (i),sin0x(i))” is a
unit direction vector employing the azimuth angle of the line con-
necting xj; with w’. Let E{-} denote the expectation operator. A
distributed adaptive estimate of w”, which minimizes J9'°°(w) =
fozl E{|d, (i) — gziw\g} can be obtained by the ATC diffusion
algorithm [7] under certain assumptions set in [4]:
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where the weights a;"), and ¢;"; satisfy the properties
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and

Qi = Xii + g, di(i). ©)
Similarly, seeking for an adaptive distributed estimate of v?, which
minimizes the cost function J9'°°(v9) = Zgil E{|vk,: — v* ||2},
one arrives at the ATC diffusion algorithm:

Ok = Vz,z‘—1 + vk Z Clk (Vlﬂ' - Vi,z-_l) (10)
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where ¢}, and aj ;. satisfy (8) and every node £ is assumed to have
access to the local data v;; for | € N ;. The performance of the
aforementioned diffusion strategy has been thoroughly analyzed in

[7].

3. PROPOSED METHODS

In (7), |Nk,;| intermediate location estimates 1);,; are combined.
Let Py be the length of a buffer monitoring %, ;, I € N ;, where
Py, < |Ng,i|- As areference intermediate location estimate, we pro-
pose to use the marginal median 'z/Jﬁ{iM of the aforementioned P
intermediate location estimates. That is, the vector-valued observa-
tions are ordered along each of the M/ = 2 channels independently,

and the median of the element-wise observations is found [19]. Let

Gx = H’l[)“ — 1/)£{ZM H Then, the following combination weights
are used: R
w I,k
= —= 12
aix = pexp( 20(1) (12)

where o, is the kernel size and p is a normalization parameter, guar-
anteeing that (8) is satisfied. The motivation behind using (12) is to
exploit the robust properties of marginal median as a location esti-
mator of multivariate observations within strategic communication,
where the intermediate location estimates may be heavily corrupted
by noise. In the following, we refer to this technique as ATC-mmed.

Instead of only using the regression vector u, ; at time instant
i, one may employ the regression vectors u, . at time instants j =



i,9 —1,...,9 — L + 1. By doing so, an M X L random matrix
U, = [u, w4l [uy;_ ] results. Similarly, each agent
may keep track of the L most recent estimates of distance d, (j)
in the random vector d, ;. The relation between d,, and U, ; is
d,, = Ul w + n, ;, where n, ; is a zero mean white random
noise vector. By applying the first order optimality condition to

E { |}g,” — Qf,inHQ} with respect to (w.r.t.) w', the following
solution is obtained:

w =E {Qk,igfﬂ}_l E{U,.d,.}- (13)

In (13), the covariance matrix R, = E {Q,”Qfl} is employed.
By dropping the expectation operator, an estimate of R, x results,
ie., Uy UL, = E;;?H uy, juj ;. Following similar lines to [7],
the intermediate estimates, that arise from local adaptation, are ob-
tained by

VYi,i = Wi,i—1 + Lk Z cir Ugi [dk,i — Uf,iwk,i_1] . (14
leNk,i

The distributed estimate wy, ; of w? is obtained through (7). The
proposed technique, coined as ATC-block, incorporates the same
steps with the ATC diffusion algorithm for mobile networks with
the only differentiation being focused on the intermediate estimates
., Which are estimated taking into account the last L pairs of
v ;—j; and di (i — j), withj =0,1,...,L — 1.

The third technique, abbreviated as ATC-block-mmed, com-
bines the aforementioned methods. Firstly, by applying the block
LMS, the intermediate estimates y,,; are determined according to
(14). Secondly, the combination coefficients a;’;, are estimated by
employing (12), which resorts to the marginal median estimate.

4. EXPERIMENTAL EVALUATION

The proposed algorithms and the ATC diffusion algorithm for mobile
networks were implemented and tested using the setting in [4]. The
number of agents in the network is N = 100. The target location is
set at (100, 100). The initial estimation of target location is (0,0) for
all agents, their initial velocity is zero, and the velocity estimation of
the center of the mass is set initially zero. The initial locations of the
N = 100 agents are uniformly distributed over two square regions
whose coordinates are [20 — 30,0 — 10] and [0 — 10, 20 — 30]. The
learning step sizes py and vy are set to 0.5 V k. The combination
coefficients are a;’), = \lel if I € N, while af j, = ¢’ = ¢ i, = Otks
where d;5, denotes the Kronecker delta. The impact of noise level is
bypassed by setting the weighting factor a = 0. Regarding velocity
control, the coefficientsare A = 0.8, 5 = 1—A = 0.2,y = 0.1. The
safe distance r among neighbours is equal to 1. The scaling factor
is s = 1, the time step is At = 0.5s = 0.5, the maximum distance
among neighbors is considered to be R = 10, while the maximum
buffer size of regression vectors is P, = 11. The total number of
time instants is 1 = 250.

Two modes of operation are studied. In the first mode, there
are no outliers. The local distance estimates dy, (%) are contaminated
with zero-mean Gaussian noise with standard deviation equal to 20,
while the elements of uy ; are corrupted with noise independently
drawn from a zero-mean Gaussian distribution having standard de-
viation equal to 10. In the second mode, a case of strategic commu-
nication is simulated. The repercussion of outliers due to deliberate
agent decisions or faulty processes of agents is studied. In particular,
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Fig. 1: Ensemble average MSE of the various ATC variants versus
iterations in the presence of nominal errors.

we would like to see how robust the network is to the propagation
of false information. Toward this goal, let ¢ be the percentage of
randomly selected agents of the network that contaminate the local
data {dx (i), us,; } by adding on the top of nominal errors, occurring
in the first mode of operation, zero-mean gross errors following the
Gaussian distribution with standard deviation equal to 100.

When there is not any cooperation between the nodes of the net-
work ajy, = ayj, = i and vf ; = Wlﬁ Y ieny, , Vi is the average
velocity of the neighborhood.

The quality of the diffusion algorithms was evaluated w.r.t. the
learning curve, i.e., the ensemble averaged network mean-squared-
error (MSE) for estimating the target location versus iterations. To
assess the ATC algorithm and the proposed techniques, 100 Monte
Carlo simulations of all algorithms were run using: a) different initial
agent location; b) different randomly chosen agents which deliber-
ately share local information contaminated by outliers; and c) differ-
ent realizations of nominal and gross errors added to the local data
{di(i),ux,;}. Then, the ensemble average of the MSE for estimat-
ing the target location over the 100 Monte Carlo independent trials
of the experiment gives an approximation of the ensemble-averaged
learning curve of the network.

The ensemble average of the MSE versus iterations for the var-
ious algorithms is plotted in Figure 1, where it is attested that the
ATC-block algorithm outperforms all the others. The kernel size was
0, = 1, with the number of the past data being L = 9 in block LMS.
In this case, the use of combination weights, which resort to marginal
median, deteriorates slightly the performance of the network. This
is confirmed by the comparison between a) ATC and ATC-mmed,
b) ATC-block and ATC-block-mmed algorithms. However, both the
ATC-block and ATC-block-mmed algorithms yield a better perfor-
mance, reducing the network MSE. Absence of cooperation between
agents deteriorates the network performance significantly.

When a percentage of agents deliberately share local informa-
tion corrupted with gross errors on the top of nominal errors, the
ensemble average MSE of ATC, ATC-mmed, ATC-block, and ATC-
block-mmed algorithms versus iterations is overlaid in Figures 2a
and 2b for ¢ = 20% and q¢ = 50%, respectively. In both cases, the
kernel size was o, = 1, while the number of the past data was L = 9
in block LMS. It is crystal clear that all the proposed techniques
improve the performance of the network, with ATC-block-mmed
algorithm outperforming all the competing techniques. The ATC-
mmed and ATC-block algorithms yield a comparable performance,
although ATC-mmed exhibits a smaller MSE than ATC-block.

Taking into account that the ATC-block-mmed algorithm was
proven to be the most efficient algorithm in the framework of strate-
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Fig. 2: Ensemble average MSE of the various ATC variants versus iterations, when a percentage q of agents deliberately share local informa-

tion corrupted with gross errors.
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Fig. 3: Ensemble average MSE of ATC-block-mmed versus iterations when a percentage g of agents deliberately share local information

corrupted with gross errors for L = 9, 15,21, 27, 33 in block LMS.

gic communication, we study next the influence of the length of past
data L employed in the block LMS. The ensemble average MSE
of ATC-block-mmed versus iterations for L = 9, 15,21, 27, 33 and
q = 20% or g = 50% is plotted in Figure 3. It can be seen that the
adoption of more past data enhances the network performance.

MSE(dB)

Fig. 4: ATC-block-mmed MSE for ¢ = 0, 10, 20, 50%.

Next, we fix L = 15 and we study the influence of the per-
centage g of agents, sharing local information corrupted with gross
errors, in the performance of the ATC-block-mmed. The ensemble
average MSE of ATC-block-mmed versus iterations is shown in Fig-
ure 4 for ¢ = 0,10,20,50%. The kernel size was o, = 1. Itis
self-evident that the performance of the network deteriorates when ¢

increases, but still the MSE level is acceptable.

Finally, it has been proven that the use of a; , = \lev instead of
aj' s, = b1k, improves the performance of the ATC diffusion algorithm
and its proposed variants.

5. CONCLUSIONS AND FUTURE WORK

Three variants of the ATC diffusion algorithm for mobile adaptive
networks have been proposed and tested in the context of strate-
gic communication. The use of combination weights, which are
negative exponentials of the distance between the intermediate lo-
cation estimates and their marginal median, and the replacement of
LMS with block LMS yield a better performance than the standard
ATC diffusion algorithm, when a percentage of agents share local
information corrupted with gross errors. When gross errors are not
present, the best performance is accomplished with the ATC-block
algorithm. The employment of more past data improves the perfor-
mance of both ATC-block and ATC-block-mmed algorithms. The
same applies when Py increases in the computation of the marginal
median. The aforementioned results confirm the importance of a)
proper weighting and b) suitable derivation of intermediate estimates
in diffusion strategies and complement the discussions made in [7].
The promising experimental results justify the investment of effort
toward analyzing theoretically the performance of these algorithms.
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