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ABSTRACT

In this paper, we develop a face detection hindering method,
as a means of preventing the threats to people’s privacy, au-
tomatic video analysis may pose. Face detection in images
or videos is the first step in human-centered video analysis to
be followed, e.g. by automatic face recognition. Therefore,
by hindering face detection, we also render automatic face
recognition improbable. To this end, we examine the appli-
cation of two methods. First, we consider a naive approach,
i.e., we simply use additive or impulsive noise to the input
image, until the point where the face cannot be automatically
detected anymore. Second, we examine the application of
the SVD-DID face de-identification method. Our experimen-
tal results denote that both methods attain high face detection
failure rates.

Index Terms— face detection, privacy protection, surveil-
lance, face de-identification

1. INTRODUCTION

As a vast amount of visual media is daily shared, viewed and
stored on-line, serious threats to the depicted persons’ pri-
vacy may be posed. For example, World Wide Web monitor-
ing systems that use face detection, tracking and recognition
[1] [2] in shared videos or images could also be used to vi-
olate privacy. Another major threat to privacy is due to the
wide use of video surveillance in public places by surveil-
lance/traffic cameras [3] or drones, since, any person can po-
tentially be identified on such videos and images. In this con-
text, let us suppose that a malicious user attempts to recognize
and track a specific individual in visual media automatically.
The first step is to detect all faces in an image or video frame
then recognize these facial regions of interest (ROIs) and re-
tain only the ones that depict the targeted individual. In order
to protect the targeted individual privacy, dedicated to hinder
face recognition, also known as face de-identification meth-
ods have been proposed.
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To begin with, ad-hoc face de-identification methods [4]
apply masks on facial regions, e.g., by employing black bars
to cover the eyes or T-shaped masks that cover both the eyes
and nose and/or mouth. Other mask shapes can be used,
e.g. rectangular ones that reveal only the mouth and ellip-
tical or circular ones that over the entire facial image ROI.
Other ad-hoc methods low-pass filter the facial image ROI
[4], apply random noise [3], use the negative of the facial
image, or swap face sub regions, such as eyes, nose or mouth,
belonging to different individuals [5]. Other de-identification
methods spatially subsample a facial image, resulting in pix-
elation, or apply a threshold to the facial image pixels [4].
Variational adaptive filtering in conjunction with face key
point detection has also been proposed to achieve face de-
identification, while retaining the facial expression of the
depicted individual [6]. In [7] Active Appearance Models
and the k-Same-furthest model are used to retain facial ex-
pressions on de-identified images. A large family of face
de-dentification methods implement the k-anonymity model
[3] [8], so that any of the de-identified images can be misclas-
sified as belonging to at least to k original individuals. The
de-identified image is calculated by averaging the k facial im-
ages that are most similar to the input image. Furthermore, an
objective function can be formulated and the optimal weights
for averaging the k most similar images are learned via gra-
dient descent [9]. In [10], the least similar k images known
as k-Same-furthest, are used instead. Building upon previous
work, apart from using the least similar k images, unique
de-identified faces are generated a for each of the k original
faces [11]. The particularities of specific face identification
methods can be used in order to defeat them [12]. In [13],
facial images are replaced by 3D morphable facial models.
In [14], the initial face is replaced with a face from another
person. Another face de-identification method reduces the
number of eigenfaces used in reconstructing the facial images
[15].

Although there is much research in face de-identification,
this is not true in the case of face detector hindering. In this
paper, we aim at hindering face detection in the first place,
thus rendering face recognition improbable. Our proposed
approach is to perform facial image corruption as little as pos-
sible, so that automatic face detection fails, while the face is
still recognizable by humans. To this end, we examine the



application of two methods. First, we consider a naive ap-
proach, i.e., we simply use additive or impulsive noise to the
input image, until the point where the face cannot be automat-
ically detected anymore. Second, we examine the application
of the so-called SVD-DID face de-identification method [16].
Our experiments denote that both methods have the potential
of hindering robust face detection in images.

The rest of this paper is organized as follows. In section 2,
additive or impulsive noise or the SVD-DID method are used
to hinder face detection. Section 3 describes the experiment
and results. Finally in Section 4, the conclusions are drawn.

2. HINDERING FACE DETECTION BY
CORRUPTING THE FACIAL IMAGE

The most straight forward approach to hindering face de-
tection is to apply noise to the image. Uniform noise:
nu(i, j) = β(η(i, j) − 0.5) (where η(i, j) ∼ U [0, 1]), or
Gaussian Noise: ng(i, j) ∼ N(0, σ) can by used for im-
age corruption In = I + n. Alternatively, impulsive noise

ni(i, j) =

{
255 or 0 for p > η(i, j)

I(i, j) for p <= η(i, j)
, where η(i, j) ∼

U [0, 1] can be used for the same purpose.
The intensity of the noise (and hence its visibility) can be

changed by varying β, σ or p for uniform, Gaussian or impul-
sive noise, respectively. In all cases increasing the parameter
values leads to an increase in the intensity of the noise. These
noise patterns were then applied to the face region, found us-
ing the Viola and Jones face detector [17] on the original im-
age.

The SVD-DID method [16] utilizes the Singular Value
Decomposition (SVD) method to introduce artifacts in the
output image. It was originally proposed for face de-identification.
Here we prove experimentally that it can be used for hinder-
ing face detection.

Briefly, the SVD-DID method uses the facial image SVD
matrix A ∈ ℜN×M factorization as a product of three ma-
trices: the singular values matrix S ∈ ℜN×M and the singu-
larvector matrices U ∈ ℜN×M and V ∈ ℜM×M [18]:

A = USVT . (1)

The eigenvectors of matrix AAT and ATA form the columns
of matrices U and V respectively. The singular values in S
are the square roots of the eigenvalues of matrix AAT . The
SVD-DID method modifies the output image by altering the
entries of matrices U, S and V. This is done in three distinct
steps:

1. SVD Coefficient Zeroing (SVD-CZ). In the first step, we
note that the largest singular values correspond to the major-
ity of facial image energy. In this step, we remove this infor-
mation by zeroing the first NZ singular values in S (NZ ≤
N ≤ M ), thus producing a new S matrix referred to as SCZ .

As the final facial image tends to become darker than the in-
put image due to energy loss, this is counterbalanced by in-
creasing the facial image pixel luminance at the end of the
de-identification process, e.g. by adding a fixed luminance
value to the output facial image pixels.

2. SVD Coefficient Averaging (SVD-CA). In the next step,
the entries of the eigenvectors in matrices U, V are low-pass
filtered using an m × m circular averaging filter with m =
2R + 1 [19], where R is the radius of the circular filter, thus
producing the matrices UAV and VAV . The facial image
reconstruction solely from these averaged matrices leads to
poor image quality. To counterbalance this effect, the new
matrices UAV and VAV are blended with the original U, V
matrices as follows:

UCA =
α ∗UAV +U

1 + α
,VCA =

α ∗VAV +V

1 + α
, (2)

where the parameter α adjusts the trade-off between visual
quality and face detection hindering potential. Similarly to
the previous step, facial image darkening is counterbalanced
by adding luminance to the output image pixels.

3. SVD Modified Sobel Filtering (SVD-MSF). The final step
utilizes a modified Sobel filter in order to high pass filter [19]
matrices UCA and VCA. The modified Sobel filter coeffi-
cients have a 3× 3 matrix form:

G =

 d 2d d
0 0 0
−d −2d −d

 , (3)

where parameter d specifies the intensity of the high pass fil-
tering. Finally matrices UF and VF are blended with the
original matrices U and V according to (2) resulting in the
matrices UF and VF , to be used in the calculation of the
output facial image matrix Ad of the SVD-DID method:

Ad = UFSCZV
T
F . (4)

3. EXPERIMENTAL FACE DETECTION
HINDERING RESULTS

3.1. Experimental Setup

Experiments to assess the effectiveness of the above methods
were performed on 653 401× 321 pixel facial images depict-
ing 15 different individuals from the XM2VTS [20] database.
The facial images are close-ups frontal ones and have a neu-
tral background. From dataset [21], a subset was also used
containing 3471 images depicting 150 different individuals.
The images were used both either RGB or 8-bit grayscale
ones. In both cases the results were similar and as such only
the results for the grayscale images are presented.

To quantify face detector hindering the face detection fail-
ure percentage Fp was used which is the number of images in



which a face is detected after applying the methods above, di-
vided by the total number of facial images. However, even
if, after the face obfuscation process, a face is detected, this
does not mean that the actual face region has been detected.
In order to quantify the accuracy of the face detector after ob-
fuscation metric r is defined as:

r =
|Im ∩ Im′|
|Im ∪ Im′|

(5)

where Im, Im′ are the facial image regions (pixel sets) found
on the original and the obfuscated image, respectively. The
[17] face detector has been used in all experiments. Using this
face detector on the XM2VTS images there were no false de-
tections prior to corrupting the face ROI. In the other dataset
some false face detections were present and the true face ROI
was selected by selecting the largest of the detected regions
which were verified manually. In the case of perfect align-
ment of Im and Im′, this metric is equal to 1, whereas lower
values indicate higher success in face detection hindering. To
quantify this face detection inaccuracy over an entire facial
imageset, the mean r̄ is calculated r̄ = 1

Nf

∑Nf

i=1 ri, where
Nf is the number of images in which a face is detected after
obfuscation.

Results using noise corruption. They are presented in
Table 1. It must be noted that, before the application of the
SVD-DID method, the face detector had 100 % face detec-
tion accuracy. It can be concluded that applying Uniform and
Gaussian noise on an image leads to poor results regarding
face detector hindering. In the subset of the XM2VTS dataset,
the corruption by uniform noise fails to prevent face detection,
since the percentage Fp is equal to zero and metric r̄ is high.
Similar results are obtained for the second dataset, but, in this
case, the percentage Fp is higher. Similar results are found
for the Gaussian noise. However, facial image corruption by
impulsive noise result in much better face detector hindering
than in the two previous cases. For high values of parameter
p, high Fp percentages can be attained and at the same time
metric r̄ is low. However this is achieved for p = 0.5 and
p = 0.8 meaning that over half of the original image pixels
are polluted by noise, leading to poor subjective facial image
quality, as shown in Figure 1. As most face recognition algo-
rithms, e.g. the subspace based ones [22], are sensitive to face
localization and size errors, even relatively large values of r̄
(e.g. r̄ = 0.9 in Table 1 means that the detected images are
unrecognizable. All types of noise corruption are good in this
respect. Such obfuscated images are much more presentable,
as can be seen in Figure 2.

SVD-DID Results. The SVD-DID method is applied
only on the facial regions in order to minimize image quality
degradation. Table 2 presents Fp and r̄ for this method. It
can be deduced that for various SVD-DID parameter values,
the face detector failure percentages are high. The lowest
face detection failure percentage is equal to 85.76%, while
the highest is equal to 99.08% for the XM2VTS subset. The

Table 1. Face detection failure percentages after adding noise
Uniform Noise

Parameter XM2VTS Subset of [21]
β Fp r̄ Fp r̄
50 0.00% 0.953 11.08% 0.921
100 0.00% 0.894 16.43% 0.875
150 0.00% 0.848 24.59% 0.830

Gaussian Noise
σ Fp r̄ Fp r̄
25 0.00% 0.909 14.82% 0.891
50 0.15% 0.835 29.01% 0.820
75 8.73% 0.790 46.52% 0.764

Impulsive Noise
p Fp r̄ Fp r̄

0.2 7.20 % 0.800 45.03 % 0.765
0.5 95.71 % 0.584 93.39 % 0.448
0.8 98.93 % 0.115 98.13 % 0.264

a) b) c)

Fig. 1. Facial image a) obfuscation using impulsive noise
with: b) p = 0.2, c) p = 0.5.

corresponding percentages are 79.27% and 97.49%, respec-
tively, for the other dataset subset. Representative obfuscated
images, where face detection fails are shown in Figure 3. This
difference is mainly due to the number of singular values that
are zeroed during the SVD-CZ step, since, in the second
case, a larger percentage of data energy is removed, while
constructing the output image.

In all cases tabulated in Table 2, the added image pixel lu-
minance is set to +100, to counter image darkening. The rest
of the parameters also cause slight variations in face detec-
tion failure percentages and, depending on their combination,
impact face detection failure percentages positively or nega-
tively. As shown, the face detection failure percentages are
high, meaning that the face detector fails to detect any face in
an image. In fact, however, the face detector failures are even
higher, since detecting a face in an image does not necessar-
ily mean that a face has been correctly localized, thus leading
in face recognition failures. Examples of such cases from the
XM2VTS image subset are presented in Figure 5, where the
SVD-DID method is applied for parameters values: N = 2,
lum = +100, α = 0.2, d = 0.5 and R = 5. Another exam-
ple for the same parameters is displayed in Figure 4, where
the SVD-DID method is selectively applied on faces in an



a) b) c)

Fig. 2. a) Original facial image, b) obfuscated image with
impulsive noise, c) detected ROIs before and after image cor-
ruption.

a) b) c)

Fig. 3. Example of applying the SVD-DID method: a) orig-
inal image b) face detection c) apply SVD-DID on face area
(NZ = 1, α = 0.5, d = 0.8, R = 5). No face is detected in
this image.

image captured with an aerial drone. In this example, the pro-
posed method had been applied only for the person depicted
on the left. It can be seen in Table 2 that, in the cases that a
face is detected after obfuscation, the r̄ values range from a
maximum of 0.667 to a minimum of 0.032 for XM2VTS and
0.6686 and 0.0723 respectively for [21], thus as in the failure
percentages, NZ plays a major role in the values of r̄.

These results confirm that the SVD-DID method it is very
good at hindering both face detection and face recognition.

Fig. 5. Examples of false face detection after applying the
SVD-DID method.

Table 2. Face detection failure percentages after applying
SVD-DID

Parameter Values XM2VTS Subset of [21]
NZ α d R Fp r̄ Fp r̄
1 0.2 0.1 5 89.74% 0.591 79.27% 0.658
1 0.2 0.1 10 88.82% 0.594 79.77% 0.655
1 0.2 0.5 5 91.58% 0.582 79.97% 0.646
1 0.2 0.5 10 87.44% 0.644 79.85% 0.666
1 0.5 0.1 5 85.76% 0.655 81.20% 0.669
1 0.5 0.1 10 85.91% 0.658 81.29% 0.658
1 0.5 0.5 5 86.68% 0.645 81.96% 0.662
1 0.5 0.5 10 86.52% 0.666 81.52% 0.652
2 0.2 0.1 5 93.72% 0.408 93.45% 0.296
2 0.2 0.1 10 94.33% 0.456 93.22% 0.276
2 0.2 0.5 5 94.95% 0.437 93.45% 0.304
2 0.2 0.5 10 94.33% 0.424 93.60% 0.290
2 0.5 0.1 5 91.88% 0.482 94.18% 0.300
2 0.5 0.1 10 92.34% 0.543 94.01% 0.284
2 0.5 0.5 5 91.88% 0.470 94.39% 0.273
2 0.5 0.5 10 92.96% 0.528 94.33% 0.288
5 0.2 0.1 5 97.09% 0.040 96.84% 0.089
5 0.2 0.1 10 96.63% 0.041 96.78% 0.095
5 0.2 0.5 5 97.24% 0.039 97.08% 0.087
5 0.2 0.5 10 96.17% 0.037 96.58% 0.095
5 0.5 0.1 5 98.32% 0.033 97.40% 0.075
5 0.5 0.1 10 97.70% 0.037 97.31% 0.081
5 0.5 0.5 5 99.08% 0.032 97.19% 0.072
5 0.5 0.5 10 98.16% 0.040 97.49% 0.079

Fig. 4. Example of selectively applying the SVD-DID method
on an image captured from an aerial drone.

4. CONCLUSIONS

The experimental results verify that the SVD-DID method is
capable of hindering face detection. Its performance is much
better than noise corruption. This can be proven since face
detection failure percentages reach 99.08% and that the mean
overlap of the detected face regions before and after apply-
ing SVD-DID is equal to 0.032. Future work in this area will
focus on developing less visible and reversible face detector
obfuscation methods so that, image quality does not suffer as
much while the original image can be recovered. Furthermore
the effectiveness SVD-DID will be assessed against more ro-
bust face detectors e.g. based on deep neural networks.
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