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Abstract—Music recordings often suffer from noise. The noisy
segments may be treated as missing data. To restore them, one
may employ interpolation techniques. A music signal is modeled
as an autoregressive process, and three interpolation methods
are developed that are based on maximum likelihood, Gibbs
sampling, and Expectation Maximization. The aforementioned
techniques are tested for restoration of missing data in vocal
and instrumental Greek folk songs. Experimental results show
that interpolation techniques based on maximum likelihood and
Gibbs sampling offer better restoration results than Expectation
Maximization.

I. INTRODUCTION

Enhancement or restoration of audio recordings deals with
problems broadly classified as localized and global distur-
bances, of which the most common are clicks (impulsive
noise) and hiss (broadband noise), respectively [1]. Click
suppression methods often use autoregressive (AR) models,
whereas hiss reduction methods are frequently based, directly
or indirectly, on some multi-rate approach. Music signals often
are degraded by sudden, unexpected bursts of impulsive noise
with random, but finite duration. Dirt, electrical interference or
mechanical damage to the storage medium cause the loss of the
original signal. The detection of the impulsive noise has been
studied from many aspects [2], [3]. Once the impulsive noise
is detected, the corrupted samples can be treated as missing.

Here, our interest is in applying statistical signal processing
to the interpolation of a sequence of lost samples (i.e., a
localized disturbance) that is based on the utilisation of a
predictive and/or a probabilistic model of the audio signal and
in particular to interpolation based on an AR model of the
music signal employing a short-term prediction model [4]. The
distorted samples can be treated as missing and reconstruction
algorithms could be employed to reconstruct the missing
samples. Substantial efforts have been made to restore audio
signals corrupted by clicks due to old recordings or scratched
CDs by resorting to either AR models [5], [6], Bayesian
estimation of the corrupted samples [1], neural networks [7],
or audio impainting [8].

In the following, we shall assume that the corrupted samples
in a music signal have already been detected. Such samples
will be restored by exploiting the information prior and after
corruption, as shown in Figure 1. Let yyy1 = {xi : 1 ≤ i < m}
and yyy2 = {xi : m + l ≤ i ≤ N} denote the observed
data and zzz = {xi : m ≤ i < m + l} be the missing
data to be restored. The full recording can be represented as

Fig. 1. The augmented data vector xxx consists of yyy1, zzz, yyy2 where zzz is the
vector of missing data having length l.

xxx = (yyyT1 | zzzT | yyyT2 )T . It is called the augmented data vector,
hereafter. Three interpolation methods are developed, resorting
to maximum likelihood, Gibbs sampling, and Expectation
Maximization, respectively. The aforementioned techniques
are tested for the restoration of missing data in instrumental
and vocal Greek folk songs. It is demonstrated that maximum
likelihood and Gibbs sampling offer a better restoration than
Expectation Maximization. The interpolation problem can be
stated as follows. Given the observed data yyy, infer the value
of the missing data zzz.

A music signal is frequently modelled as an AR process of
order p, i.e., for p+ 1 ≤ i ≤ N ,

xi =

p∑
j=1

θj xi−j + ei (1)

with the excitation sequence eee made up of independent iden-
tically distributed (i.i.d.) Gaussian random variables of zero
mean and standard deviation σ. Let w ∈ R

(N−p)×1 be the
vector having elements xi for p + 1 ≤ i ≤ N . Then, the
excitation sequence eee ∈ R

(N−p)×1 can be obtained from

eee = www −LLL θθθ (2)

where θθθ ∈ R
p×1 is the vector of AR parameters and LLL ∈

R
(N−p)×p is defined as

LLL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xp xp−1 · · · x2 x1

xp+1 xp · · · x3 x2

... · · · ...
xm−1 xm−2 · · · xm−p+1 xm−p

xm xm−1 · · · xm−p+2 xm−p+1

... · · · ...
xN−1 xN−2 · · · xN−p+1 xN−p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

Alternatively, the (full) excitation sequence eee ∈ R
N×1 can be



expressed in terms of the augmented data as

eee =KKK xxx (4)

where KKK = KKK(θθθ) ∈ R
N×N is the band diagonal Toeplitz

matrix

KKK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
−θ1 1 0 0 0 0 0 0
−θ2 −θ1 1 0 0 0 0 0

. . .
. . .

. . .
. . .

0 0 0 0 −θ1 1 0 0
0 0 0 0 −θ2 −θ1 1 0
0 0 0 0 −θ2 −θ1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)
The estimation of the model parameters (i.e., the missing

data zzz, the AR parameters θθθ, and the noise standard devia-
tion σ) depends on the likelihood function of the excitation
sequence given by

p(www|θθθ, σ) = p(eee) =

N∏
i=p+1

p(ei) = (2πσ2)−
N−p

2 exp
(
−eeeTeee

2σ2

)
.

(6)
Resorting to (2), the excitation energy is expressed in terms
of the observed data www as:

eeeTeee = wwwTwww − 2wwwTLLL θθθ + θθθTLLLTLLL θθθ. (7)

Let KKKT KKK be partitioned as [3]:

KKKT KKK =

⎡
⎣AAA11 BBB1 AAA12

BBBT
1 DDD BBBT

2

AAA21 BBB2 AAA22

⎤
⎦ . (8)

It can be shown that KKKT KKK is symmetric and band diagonal.
In addition, it is Toeplitz after the p-th row [3]. Let also AAA
and BBB be defined as

AAA =

[
AAA11 AAA12

AAA21 AAA22

]
BBB =

[
BBB1

BBB2

]
. (9)

Let yyy = (yyyT1 |yyyT2 )T . An alternative expression for the excitation
energy is obtained by employing the augmented data xxx:

eeeTeee = (KKK xxx)T (KKK xxx) = yyyTAAAyyy + 2yyyTBBB zzz + zzzTDDD zzz. (10)

II. MAXIMUM LIKELIHOOD (ML) ESTIMATION

Let us elaborate the estimation of the model parameters by
maximizing the likelihood (6) with respect to (wrt.) the AR
parameters θθθ. This is equivalent to minimizing the excitation
energy (7) wrt. θθθ, which yields the estimates:

θ̂θθ = (LLLT LLL)−1LLLTwww. (11)

Next, for fixed θθθ, minimizing (10) wrt. the missing data zzz
yields the estimate

ẑzz = −DDD−1 BBBT yyy (12)

where DDD ∈ R
l×l, BBB ∈ R

(N−l)×l, and yyy ∈ R
(N−l)×1. Finally,

by differentiating (6) wrt. σ and equating with zero, we obtain

the maximum likelihood estimate for scalar σ:

σ̂ =

√
eeeT eee

N
. (13)

The most computationally efficient procedure to derive zzz in
(12) is to solve the system of equations DDDzzz = −BBBT yyy, because
DDD is band diagonal and symmetric with bandwidth equal to
p [3]. Since the index of the starting missing sample m is
greater than p, DDD is Toeplitz, a fact that yields computational
savings whenever 2p2 > l. It is worth noting that BBB is highly
sparse.

III. GIBBS SAMPLER

Here, the Gibbs sampler samples vectors rather than scalars.
The parameter space is partitioned into the missing data zzz,
the AR parameters θθθ, and the standard deviation σ. The
Gibbs sampler draws random variates from the joint density
p(zzz,θθθ, σ | yyy). Let (zzz0, θθθ0, σ0) be a starting point in parameter
space. If zzzi ← p(zzz | θθθi−1, σi−1, yyy) denotes a random sample
zzzi drawn from the conditional probability density function
of zzz with all other parameters fixed at the i-th iteration, the
sequence of variates

zzz1 ← p(zzz | θθθ0, σ0, yyy)

θθθ1 ← p(θθθ | σ0, zzz1, yyy)

σ1 ← p(σ | zzz1, θθθ1, yyy)
zzz2 ← p(zzz | θθθ1, σ1, yyy)

θθθ2 ← p(θθθ | σ1, zzz2, yyy) (14)
...

σi ← p(σ | zzzi, θθθi, yyy)
assumes a distribution in parameter space that asymptotically
approaches the joint density p(zzz,θθθ, σ |yyy). In audio restoration,
only the missing data component is of interest. The AR pa-
rameters and the standard deviation of the excitation sequence
are ignored. Because the three variables are drawn from the
joint density, one variable taken on its own is actually a sample
from the marginal density, implying that the missing data are
drawn from the predictive density p(zzz | yyy).

If we assume uniform prior probabilities on zzz,θθθ, and σ, then
we can write:

p(zzz,θθθ, σ | yyy) = p(zzz,yyy | θθθ, σ) p(θθθ, σ)
p(yyy)

∝ p(zzz,yyy | θθθ, σ). (15)

The conditional density of the missing data is then given by:

p(zzz | θθθ, σ,yyy) = p(zzz,θθθ, σ | yyy)∫
Z p(zzz,θθθ, σ | yyy) dzzz (16)

where Z = R
l×1 is the domain of the missing data of length

l. Similarly, the conditional density of the AR parameters is
expressed as:

p(θθθ | σ,zzz,yyy) = p(zzz,θθθ, σ | yyy)∫
ΘΘΘ p(zzz,θθθ, σ | yyy) dθθθ (17)



where ΘΘΘ = R
p×1, is the domain of the AR parameters. Finally,

the conditional density of the standard deviation is given by:

p(σ | zzz,θθθ,yyy) = p(zzz,θθθ, σ | yyy)∫∞
0

p(zzz,θθθ, σ | yyy) dσσσ . (18)

A. Conditional density of the missing data

By substituting (10) in (6), we obtain:

p(zzz,θθθ, σ|yyy) ∝ σ−N exp
[− 1

2σ2 (yyy
TAAAyyy + 2yyyTBBB zzz + zzzTDDD zzz)

]
.

(19)
Integrating out the missing data in the denominator of (16)
gives: ∫ ∞

−∞
p(zzz,θθθ, σ | yyy) dzzz ∝ σ−N exp

[− 1
2σ2 yyyTAAAyyy

]
∫ ∞

−∞
exp

[− 1
2σ2 (2yyy

TBBB zzz + zzzTDDD zzz)
]
dzzz. (20)

Using the identity [9]:∫ ∞

−∞
exp

(− 1
2 xxx

TAAAxxx+ JJJTxxx
)
d x1 d x2...d xn

=
(2π)n/2

|AAA|1/2 exp
(
1
2 JJJ

TAAA−1JJJ
)

(21)

where |AAA| is the determinant of matrix AAA and n = dim(xxx) is
the length of xxx, (20) becomes∫ ∞

−∞
p(zzz,θθθ, σ | yyy) dzzz ∝ σ−(N−l)

exp
[− 1

2σ2

(
yyyTAAAyyy − yyyTBBBDDD−1BBBTyyy

)]
. (22)

The substitution of (19) and (22) into (16) yields:

p(zzz | θθθ, σ,yyy) = σ−l exp
[− 1

2σ2Qzzz

]
(23)

where

Q zzz = zzzTDDD zzz + 2yyyTBBB zzz + yyyTBBBDDD−1yyy

= (zzz − ẑzz)TCCC−1(zzz − ẑzz) (24)

with the inverse covariance matrix of the missing data given
by

CCC−1 =
DDD

σ2
. (25)

The mode ẑzz of the conditional density (23) is as in (12) i.e.,

ẑzz = −DDD−1BBBTyyy. (26)

To generate the missing samples, first the Cholesky decom-
position of the band diagonal matrix CCC−1 is computed, i.e.,
CCC−1 = SSST SSS. If uuu ∈ R

l×1 is a Gaussian random vector of
zero mean and unit covariance matrix, we solve for zzz such that
SSS zzz = uuu with a band LU decomposition. Finally, zzz = ẑzz + zzz,
where ẑzz is given by (26).

B. Conditional density of the AR parameters

By substituting (7) in (6), we obtain:

p(zzz,θθθ, σ|yyy) ∝ σ−N exp
[− 1

2σ2 (www
Twww − 2wwwTLLL θθθ + θθθTLLLTLLL θθθ)

]
.

(27)

Integrating out the AR parameters in the denominator of (17),
we arrive at∫ ∞

−∞
p(zzz,θθθ, σ | yyy) dθθθ ∝ σ−N+p

exp
[− 1

2σ2 www
Twww

]
exp

[
wwwTLLL (LLLTLLL)−1LLLTwww

]
(28)

where p = dim(θθθ). The substitution of (27) and (28) in (17)
yields

p(θθθ | σ,zzz,yyy) ∝ σ−p exp
[− Qθθθ

2σ2

]
(29)

where

Qθθθ = wwwTLLL (LLLTLLL)−1LLLTwww − 2wwwTLLL θθθ + θθθTLLLTLLL θθθ

= (θθθ − θ̂θθ)TC′C′C′−1(θθθ − θ̂θθ) (30)

with the inverse covariance matrix of the reduced data given
by

C′C′C′−1 =
LLLTLLL

σ2
. (31)

The mode θ̂θθ of the conditional density (29) is as in (11), i.e.,

θ̂θθ = (LLLTLLL)−1LLLTwww. (32)

To generate the AR parameters, a similar procedure to that
of the generation of missing data is applied, i.e., θθθ = θ̂θθ + θθθ,
where θ̂θθ is given by (32) and θθθ is such that SSS θθθ = uuu with SSS
being the Cholesky factor of C′C′C′−1.

C. Conditional density of the standard deviation

Starting from

p(σσσ,θθθ,zzz | yyy) = σ−N exp
[
−eeeTeee

2σ2

]
(33)

we can integrate out the standard deviation to arrive at:∫ ∞

−∞
p(σσσ,θθθ,zzz | yyy) d σ ∝ [

eeeTeee
]−N

2 (34)

which is in the form of a Student-t distribution. It is seen that
(34) does not depend on σ. Accordingly, by combining (33)
and (34) we obtain the non-Gaussian density:

p(σ | zzz,θθθ,yyy) ∝ [
eeeTeee

]N
2 σ−N exp

[
−eeeTeee

2σ2

]
. (35)

To generate σi, start from a Gamma variate with N−1
2 degrees

of freedom gi, take the reciprocal of its square root, and scale

the result, i.e., σi =
√

eeeTeee
2

1√
gi

.

IV. EXPECTATION MAXIMIZATION- EM

Let us assume that p(yyy) is constant, because yyy is fixed, and
p(θθθ) is uniformly distributed to reflect our ignorance for the
value of θθθ in the absence of data. The starting point is to write
out the predictive density:

p(zzz | yyy) ∝ p(z, yz, yz, y) =
p(z, yz, yz, y | θθθ) p(θθθ)
p(z, yz, yz, y | θθθ) p(θθθ)

p(z, yz, yz, y)

∝ p(z, yz, yz, y | θθθ)
p(θθθ | y, zy, zy, z)

, (36)

where we have used p(θθθ | yyy,zzz) = p(zzz,yyy | θθθ) p(θθθ)
p(zzz,yyy) . Taking the

logarithm of both sizes in (36), ignoring any additive constant,



multiplying then both sides by p(θθθ|y, z∗y, z∗y, z∗), and integrating with
respect to θθθ, we arrive at

log p(zzz | yyy) =
∫
ΘΘΘ

log p(zzz | yyy,θθθ) p(θθθ | yyy,z∗z∗z∗) dθθθ︸ ︷︷ ︸
Q(zzz,zzz∗)

−
∫
ΘΘΘ

log p(θθθ | yyy,zzz) p(θθθ | yyy,z∗z∗z∗)︸ ︷︷ ︸
H(zzz,zzz∗)

dθθθ (37)

where ΘΘΘ = R
p is the domain of the AR parameters. The left

hand side of (37) is not a function of θθθ. Rao has shown that
[10]:

H(zzz,zzz∗)−H(zzz,zzz) ≤ 0. (38)

If zzzi = zzz∗ is the estimation of missing data in the current
iteration, then zzzi+1 = zzz is chosen to maximize the function
Q(zzz,zzz∗) in the next iteration. This value for zzz then becomes
the new value for zzz∗. Because of the inequality (38), each
new value for zzz∗ is guaranteed not to decrease the value of
the predictive density p(zzz | yyy). The procedure is iterated until
convergence, when the predictive density does not increase
any more, at which point a supremum has been found. The
Gaussian log likelihood can be written as:

log p(zzz,yyy | θθθ) = eeeTeee

2σ2
− N

2
log(2πσ2). (39)

From (2), we have eee = www − LLL θθθ. Let LLLi+1 = LLLi+1(yyy, zzzi+1)
be the matrix that results from missing data zzzi+1 and LLLi =
LLL i(yyy, zzzi) be the corresponding matrix that results when the
missing data zzzi are used. In the following, only functions of
θθθ and zzz are of concern.

A. Expectation

The expectation step involves integration over θθθ in order to
evaluate the function Q(zzz,zzz∗), i.e.,

Q(zi+1zi+1zi+1, zizizi) =

∫
ΘΘΘ

log p(zzzi+1, yyy | θθθ) p(zzzi, yyy | θθθ) dθθθ (40)

where p(zzzi+1, yyy | θθθ) = p(zzzi+1 | yyy,θθθ) p(yyy | θθθ) is used. The log
probability in (40) is expressed as

log p(zzzi+1, yyy | θθθ) ∝ − (www −LLLi+1θθθ)
T (www −LLLi+1θθθ)

2σ2

− N

2
log(2πσ2) (41)

where www = (yyyT1 | zzzTi+1 | yyyT2 )T . The second conditional density
in (40) is given by

p(zzzi, yyy | θθθ) ∝ (2πσ2)−
N
2 exp

[
− (vvv−LLLi θθθ)

T (vvv−LLLi θθθ)
2σ2

]
(42)

where vvv = (yyyT1 | zzzTi |yyy2)T . Next, the integration of the product
of (41) and (42) over the AR parameters θθθ is outlined. For
notation simplicity, Li+1Li+1Li+1 and LiLiLi are denoted as LLL and MMM ,
respectively. To arrive at a closed form expression for (40),

the following substitutions are made:

(www −LLL θθθ)T (www −LLL θθθ) = (θθθ − θ̂θθ)T LLLT LLL (θθθ − θ̂θθ)

+wwwTwww −wwwTLLL (LLLTLLL)−1LLLTwww (43)

(vvv −MMM θθθ)T (vvv −MMM θθθ) = (θθθ − φ̂φφ)T MMMT MMM (θθθ − φ̂φφ)

+ vvvTvvv − vvvTMMM (MMMTMMM)−1MMMTvvv (44)

where θ̂θθ = (LLLTLLL)−1LLLTwww and φ̂φφ = (MMMTMMM)−1MMMTvvv. Let ppp =
θθθ− φ̂φφ and qqq = ppp− (θ̂θθ− φ̂φφ) = θθθ− θ̂θθ. Then, (40) takes the form

Q(zi+1zi+1zi+1, zizizi) =

∫
ΘΘΘ

A(ppp) exp [−B(ppp)] dθθθ (45)

where

A (ppp) = − 1

2σ2

[
pppTLLLTLLLppp− 2 pppTLLLTLLL(θ̂θθ − φ̂φφ)

+(www −LLL φ̂φφ)T (www −LLL φ̂φφ)

]
− N

2
log (2πσ2) (46)

B (ppp) = − 1

2σ2

[
pppTMMMTMMM ppp+ vvvTvvv

−vvvTMMM (MMMTMMM)−1MMMTvvv

]
− N

2
log (2πσ2). (47)

Using the identities [9]:∫
Rq

exp
[−xxxTBBB xxx

]
dx =

π
q
2√

detBBB
(48)

∫
Rq

xxxTAAAyyy exp
[−xxxTBBB xxx

]
dx = 0 (49)

∫
Rq

xxxTAAAxxx exp
[−xxxTBBB xxx

]
dx =

π
q
2√

detBBB

tr(BBB−1AAA)

2
(50)

for q = dim(xxx) and assuming yyy independent of xxx, we obtain:

Q(zi+1zi+1zi+1, zizizi) = K(zi)

[
tr
((
MMMTMMM

)−1 (
LLLTLLL

))
2

+

(
www −LLL φ̂φφ

)T (
www −LLL φ̂φφ

)
2σ2

− N

2
log (2πσ2)

]
(51)

where

K(zi) = − (2πσ2)−N/2

√
det MMMTMMM

exp

[
−
(
vvvTvvv − vvvTMMM (MMMTMMM)−1MMMTvvv

)
2σ2

]
. (52)

B. Maximization

Having found Q(zzzi+1, zzzi), its maximization wrt. zzzi+1 is
sought by solving ∂

∂ zzzi+1
Q(zzzi+1, zzzi) = 0. This is equivalent

to solving for zzzi+1 such that

1

2
tr
[(
LLLT

iLLL i

)−1 ∂
∂ zzzi+1

(
LLLT

i+1LLL i+1

)]
(53)

+
1

2σ2

∂

∂ zzzi+1
(www −LLLi+1 φ̂φφ)

T (www −LLLi+1 φ̂φφ) = 0 (54)
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Fig. 2. 1000 samples from a Greek folk song from Pontus, where a woman
sings a capella.

Similarly to (2) and (4), we claim eee = www−LLLi+1 φ̂φφ =KKK (φ̂φφ)www.
It can be showed that [3]:

1

2σ2

∂

∂ zzzi+1
(www −LLLi+1 φ̂φφ)

T (www −LLLi+1 φ̂φφ) =

1

σ2
(BBBTyyy +DDD zzzi+1). (55)

The differentiation of the trace yields:

1

2
tr
[(
LLLT

iLLL i

)−1 ∂
∂ zzzi+1

(
LLLT

i+1LLL i+1

)]
= TTTzzzi+1 + qqq (56)

where TTT is a symmetric band diagonal Toeplitz matrix with
diagonal elements equal the sum of the corresponding diagonal
of (LLLT

i LLLi)
−1. The term qqq depends on the reduced data and

may be calculated efficiently by means of a convolution [3].
Accordingly, the M step of the EM algorithm solves the system
of equations

TTTzzzi+1 + qqq +
1

σ2
(BBBTyyy +DDD zzzi+1) = 0 (57)

or equivalently the following band diagonal Toeplitz linear
system of equations:

(σ2TTT +DDD)zzzi+1 = −(σ2qqq +BBBTyyy). (58)

It is seen that the EM method solves (58) contrary to (26)
that is solved by the ML. Both TTT and qqq can be obtained from
σ2

(
LLLTLLL

)−1
[3].

V. EXPERIMENTS

The three restoration techniques were applied to two Greek
folk songs, namely a vocal song and an instrumental one1.
The implementation of these techniques on real recordings
presents certain difficulties, such as the need to cope with huge
amounts of samples. For example, a song of 2 min duration
sampled at a frequency 44.1 kHz yields 5 million samples. In
the following, we shall apply the restoration methods to music
recording segments and not the full recordings. An important
reason why we choose to process only parts of songs and not a
whole song is the assumption made, that the part of the signal
to be interpolated is stationary.

A segment of 1000 samples extracted from a Greek
folk song is plotted in Fig. 2. This song is entitled
Kαλαντάρτς καλή χρoνία (New Year’s Carol). It was

1 Code to reproduce the results can be found at: http://tinyurl.com/gt85tsq

sung by Mrs. Athina Korsavidou and was recorded in 1930.
The song is included in the collection “Songs of Pontos”
released by the Melpo Merlier Music Folklore Archive [11].
Another segment of the same length from an instrumental
Greek folk song is shown in Fig. 3. The song is entitled
Kαλoνυχτιά (Good Night) and stems from the region of
Western Macedonia. A clarinet and a drum is playing in it,
which were recorded in outdoor festivities. Both signals in
Figs. 2 and 3 are assumed AR processes of order p = 40.
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Fig. 3. 1000 samples of the instrumental Greek folk song under study.

From the first music segment shown in Fig. 2, 200 samples
from the interval [400, 600] are removed. The restoration
offered by the ML method, shown in Fig. 4, is the best with
the restored signal being very close to the original signal. The
restoration achieved by the Gibbs sampling after 600 repeti-
tions is shown in Fig. 5. Note that the restored signal plotted
is the mean of the last 50 iterations. The first 550 samples
are considered as a burn-in period and are used in order to
give the chain some time to start generating representative
samples of the desired distribution. The restored signal looks
like the original signal, but it has a smaller variability. The
EM method yields the poor result shown in Fig. 6, which is
attributed to the fact that the estimated excitation sequence in
the gap approaches zero.
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Fig. 4. Restoration of the song segment in Fig. 2 with ML.

From the second music segment shown in Fig. 3, 200
samples from the interval [500, 700] are removed. The ML
method offers again the best restoration that is shown in Fig. 7.
The restoration with Gibbs sampling is close to the original
music segment, but not so accurate as can be seen in Fig. 8.
The excitation sequence is vanished in the domain of missing
samples with the EM method, yielding the interpolated signal
plotted in Fig. 9.

The restoration quality index, i.e., the ratio of the restored
signal energy over the original signal energy expressed in dB,
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Fig. 5. Restoration of the song segment in Fig. 2 with Gibbs sampling.
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Fig. 6. Restoration of the song segment in Fig. 2 with EM.
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Fig. 7. Restoration of the song in Fig. 3 with ML.
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Fig. 8. Restoration of the song in Fig. 3 with Gibbs sampling.
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Fig. 9. Restoration of the song in Fig. 3 with EM.

has been used as a quantitative figure of merit to compare the
three restoration techniques. Table I summarizes the measure-
ments for both songs. The smallest absolute value indicates
the best technique.

TABLE I
RESTORATION QUALITY INDEX OF THE VARIOUS RESTORATION METHODS.

Method
song ML Gibbs EM
vocal 0.0199 0.3528 -2.2717
instrumental -0.0146 0.0322 -7.9129

VI. CONCLUSIONS AND FUTURE WORK

In this paper, three restoration methods have been developed
and tested for interpolating missing data in segments extracted
from Greek folk songs. The ML estimation has shown to
yield the best result. Future work includes the use of different
assumptions for excitation sequences. Nothing precludes the
application of the aforementioned techniques to the interpola-
tion of missing data in image regions. An example is included
in the code provided at github.
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