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Abstract—In this paper, we deal with the classification of Greek
folk songs into 8 classes associated with the region of origin
of the songs. Motivated by the way the sound is perceived by
the human auditory system, auditory cortical representations are
extracted from the music recordings. Moreover, deep canonical
correlation analysis (DCCA) is applied to the auditory cortical
representations for dimensionality reduction. To classify the
music recordings, either support vector machines (SVMs) or
classifiers based on canonical correlation are employed. An
average classification rate of 73.25 % is measured on a dataset
of Greek folk songs from 8 regions, when the auditory cortical
representations are classified by the SVMs. It is also demon-
strated that the reduced features extracted by the DCCA yield
an encouraging average classification rate of 66.27%. The latter
features are shown to possess good discriminating properties.

I. INTRODUCTION

In the last years, various on-line music sharing commu-
nities and several applications have emerged, which offer
the users a personalized experience usually in the form of
recommendations by exploiting content and context. As a
result, Music Information Retrieval (MIR) has turned into
a growing research field. Since the classification of music,
mainly into different genres, such as classical, pop, jazz, etc.,
is an important aspect of such systems, a significant amount
of research has been performed. A comprehensive survey of
music classification methods can be found in [1].

In this paper, we study the problem of classifying Greek
folk music into different genres, depending on the geographic
region it stems from. Greece exhibits a long and rich music
tradition [2]. Folk songs are strongly associated with cus-
toms and traditions, recounting historical events, everyday
life problems and events, as well as folk tales. Greek folk
music can be categorized according to the geographic region it
originates from, because the music of a specific region exhibits
a particular character, which is easily identified. However,
in some cases, songs from neighboring regions may present
strong similarities. Furthermore, folk songs can be divided into
different types, depending on their content, such as laments,
marriage songs, lullabies, songs of exile, and Acritic ballads,
among others [3]. Apart from their lyric content, songs of
the same category usually exhibit similarities in rhythm and
melody.
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Although there is rich literature devoted to pattern analysis
of western music, the existing bibliography concerning non-
western music, and especially the Greek music, is rather
scarce. A web content management system is presented in [4],
containing a collection of Greek folk songs and a game with
a purpose is proposed, which enables the users to annotate
folk music. In [5], the maximally general distinctive pattern
method, originally proposed in [6], is employed in order to
extract distinctive patterns from different types of Cretan folk
songs. A method for retrieval of Greek, as well as African,
music recordings is introduced in [7], which is based on
rhythmic similarity. A rhythmic signature is extracted for each
recording by means of self similarity analysis. Subsequently,
the similarity between two signatures is measured using Dy-
namic Time Warping. Another approach for measuring the
rhythmic similarity between two musical pieces can be found
in [8]. The proposed method is suitable for musical pieces
with similar rhythmic structure, but varying tempo, as is the
case with Greek folk music. A framework for detecting similar
phrases in traditional music of the Eastern Mediterranean is
presented in [9], which integrates rhythmic as well as melodic
aspects. In [10], a case study is presented, which deals with
the classification of Greek music into different moods (e.g.,
“happy”, “sad”, “angry”). The authors experiment with various
features and classifiers, while they utilize both audio and lyrics
information.

This paper extends the preliminary work on Greek folk
music reported in [11]. Here, we explore alternative repre-
sentations for the music signal and assume a more complex
classification scenario, which consists of eight classes instead
of two. In particular, instead of mel-frequency cepstral coef-
ficients used in [11], we employ the auditory cortical repre-
sentations that are based on spectrotemporal modulations [12],
whose derivation is motivated by the human auditory system.
The auditory cortical representations have exhibited very good
results in western music genre recognition [13]. Here, it is
demonstrated that they perform equally well for Greek folk
music. Deep Canonical Correlation Analysis (DCCA) [14] is
applied to the extracted auditory representations in order to
obtain discriminative low-dimensional feature descriptors of
the music recordings in each class. The classification of the
Greek folk song recordings into 8 classes is based either on
Canonical Correlation Analysis (CCA) or Support Vector Ma-
chines (SVMs). An overall good performance is achieved with



recognition rates exceeding 66%. The top average accuracy
disclosed here is 73.25%.

II. PROPOSED METHOD

The methodology applied to solve the music classification
problem consists of two steps. In the first step, feature ex-
traction is performed on the audio data in order to obtain a
representation suitable for the classification task. In the second
step, the audio data are classified into eight different classes.

A. Auditory cortical representations

These feature descriptors are inspired by the way sound is
perceived and processed by the human auditory system [12].
The human auditory system can be modeled by a two stage
process. The first stage models the cochlea, and converts the
audio signal to an auditory representation (spectrogram). It has
been reported that the basilar membrane across the cochlea
exhibits a tonotopical organization, so that higher frequency
tones stimulate peaks near the base of the cochlea, while lower
frequency ones stimulate peaks near the apex of the cochlea
[15]. Therefore, the basilar membrane can be modeled by a
bank of bandpass filters. To this end, the constant Q transform
(CQT) is employed [16]. The CQT is a technique, which
transforms a signal from time to the frequency domain, such
that the center frequencies of the bins are geometrically spaced
and the Q factors (i.e., the ratios of the center frequencies to
the bandwidths) are equal. This means that a better frequency
resolution is observed for the low frequencies, while the time
resolution is better for high frequencies, which resembles the
frequency resolution of the auditory system.

In the second stage, the audio signal reaches the primary
auditory cortex, where it is processed, perceived and inter-
preted. In this stage, the spectral and temporal modulation
content of the auditory spectrogram is estimated. A topo-
graphical organization can be also observed in the primary
auditory cortex, where the cells are organized according to
their response selectivity in different spectral and temporal
stimuli [15]. To model this functionality, multi-resolution two-
dimensional (2D) wavelet analysis is applied on the auditory
spectrogram that was extracted in the first stage. Wavelet
analysis is implemented using 2D Gaussian filters, ranging
from narrow to broad spectral scales and from slow to fast
temporal rates. The aforementioned analysis results in a four-
dimensional (4D) representation of time, frequency, rate, and
scale, referred to as auditory cortical representation [12]. The
auditory cortical representations extracted for each frame are
averaged across time and the resulting 3D representations for
each song are vectorized, as is detailed in Section III.

B. Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis calculates linear transfor-
mations for two random vectors that are maximally correlated
[17]. CCA uses two different views for a set of patterns
(e.g., two different representations for a given dataset) and
projects them into a space of lower dimension, where they are
maximally correlated. Here, the CCA is treated as a pattern

classification method. Furthermore, this section serves as an
introduction for the next section on DCCA, which is used for
discriminative dimensionality reduction.

Let us assume a dataset of n samples xi, i = 1, 2, ..., n,
represented by the data matrix X = {x1|x2|...|xn} ∈ Rd×n

and the label matrix Y = {y1|y2|...|yn} ∈ Rk×n, where k
is the number of classes. Furthermore, we assume that xi and
yi are centered. The CCA finds the projection vectors wx ∈
Rd×1 and wy ∈ Rk×1, maximizing the sample correlation
coefficient:

(w∗x,w
∗
y) = argmax

wx,wy

wT
x XYTwy√

wT
x XXTwx

√
wT

y YYTwy

. (1)

The above objective function is invariant to the scaling of wx

and wy . Therefore, it can be transformed into a constrained
optimization problem of the form:

argmax
wx,wy

wT
x XYTwy (2)

subject to wT
x XXTwx = 1 and wT

y YYTwy = 1.

In the case that YYT is non-singular, w∗x is calculated by
solving:

max
wx

wT
x XYT (YYT )−1YXTwx

subject to wT
x XXTwx = 1.

(3)

The aforementioned assumption for YYT can be maintained
by assuming a class membership indicator matrix, where each
column has an entry equal to 1 in the index corresponding to
the sample’s label and equal to 0, otherwise, and then apply
centering. The solution of (3) is obtained as the eigenvector
corresponding to the top eigenvalue η of the generalized
eigenvalue problem given by:

XYT (YYT )−1YXTwx = ηXXTwx. (4)

By retaining the top k eigenvectors, and under certain or-
thonormality constraints, multiple projection vectors can be
obtained. In order to avoid the singularity of XXT and
YYT and to prevent overfitting, two regularization terms
are incorporated in (4), i.e., λxI and λyI with λx, λy > 0.
The resulting problem, called regularized CCA [18], takes the
form XYT (YYT + λyI)−1YXTwx = η(XXT + λxI)wx.

Pattern classification can be considered as a least squares
problem. Considering a data matrix X̃ ∈ Rd×n and class labels
yi ∈ {1, 2, ..., k}, i = 1, 2, ..., n, a centered data matrix X and
centered labels ti = yi − ȳ can be obtained, where ȳ is the
average class label. The centered labels can be collected in
a row vector t ∈ R1×n and a projection vector w ∈ Rd×1

is found, which minimizes the sum of squares cost function
given by [19]:

min
w

n∑
i=1

|wTxi − ti|2 = ‖wTX− t‖22. (5)

After learning w∗ that minimizes (5) for a training set (i.e.,
subpart of X), the label of a test data sample z is calculated



by rounding:

ŷ(z) = ȳ + (w∗)T (z− x̄), (6)

where x̄ denotes the average data sample for the training set.
If instead of a scalar label, a vector ti ∈ Rk×1 is used as
label for the i-th sample, i = 1, 2, ..., n, a label matrix can
be constructed T = {t1|t2|...|tn} ∈ Rk×n. Then, the least
squares cost function (5) takes the form:

min
W

n∑
i=1

‖WTxi − ti‖22 = ‖WTX−T‖2F , (7)

where W ∈ Rd×k is the projection matrix and ‖A‖F is the
Frobenius norm of matrix A. The solution of (7) is obtained
by [19]:

WLS = (XXT )†XTT , (8)

where A† is the Moore-Penrose pseudo-inverse of matrix A.
After having learnt WLS for a training set, the label of a test
data sample z can be calculated by:

argmax
j=1,2,...,k

ȳj + wT
j (z− x̄), (9)

where ȳi denotes the j-th element of the average class label
indicator vector ȳ and wj is the j-th column of the projection
matrix WLS . It has been shown that for T = (YYT )−1/2Y
and under mild conditions, the solution of the least squares
problem given by (8) and the matrix WCCA constructed by
the top k eigenvectors of the generalized eigenvalue problem
(4) are equivalent for several classifiers, such as the k-Nearest
Neighbor or the linear SVMs [20]. The aforementioned fact
justifies the use of both the CCA and the linear SVM classifiers
in the experiments conducted in Section III.

C. Deep Canonical Correlation Analysis (DCCA)

DCCA is an extension of CCA, whose objective is to find
representations for two views of the data that are maximally
correlated, by using stacked layers of non-linear transforma-
tions [14]. In more detail, the DCCA employs two deep neural
networks (one for each data view), which are simultaneously
trained, so that their output layers exhibit maximum correla-
tion. In the input layer of each network, the number of nodes
is equal to the dimensionality of the corresponding view, while
the output layers consist of the same number of nodes for both
networks. The networks may have different numbers of hidden
layers, while all the hidden layers of a deep neural network
have the same number of nodes.

Let us consider two deep neural networks, corresponding
to the data and class label views. Assuming data samples of
dimensionality d and class label vectors of dimensionality k,
the two networks will have input layers of d and k nodes,
respectively, while both output layers will consist of o nodes.
Furthermore, we assume that the first network has L hidden
layers with c1 nodes each and the second network has M
hidden layers with c2 nodes each.

Given an input data sample xi in the first network, the
output of the first hidden layer is obtained by h1 = s(W1

1xi+

b1
1) ∈ Rc1×1, where W1

1 ∈ Rc1×d is the weight matrix,
b1
1 ∈ Rc1×1 is the vector of biases, and s :R → R is a non-

linear activation function. The output h1 of the first hidden
layer serves as input to the second hidden layer, which in turn
has h2 as output, and so on. The output of each hidden layer,
is thus described by:

hl = s(W1
l hl−1 + b1

l ), l = 2, . . . , L (10)

where W1
l ∈ Rc1×c1 , l = 2, . . . , L − 1. When l = L, (10)

computes the final representation f1(xi) ∈ Ro×1, i.e., W1
L ∈

Ro×c1 and b1
L ∈ Ro×1. In the same way, regarding the second

network, the output of the hidden layer m is given by:

hm = s(W2
mhm−1 + b2

m), m = 1, 2, . . . ,M. (11)

When m = M , (11) gives the output representation of
f2(yi) ∈ Ro×1 for a multivariate label yi. The aim of the
DCCA method is to jointly learn the vectors of all param-
eters W1

l ,b
1
l ,W

2
m,b

2
m for both the networks, such that the

correlation between f1(X) and f2(Y) is maximized.
Let us denote with HX ∈ Ro×n and HY ∈ Ro×n the

matrices whose columns correspond to the output represen-
tations obtained by the two deep networks and with H̄X =
HX− 1

nHX1 and H̄Y = HY − 1
nHY 1 the centered matrices.

The sample dispersion matrices for the output representations
of the two views are calculated by Σ̂X = 1

n−1H̄XH̄T
X +rXI

and Σ̂Y = 1
n−1H̄Y H̄T

Y + rY I, where rX > 0 and
rY > 0 are regularization parameters so that Σ̂X , Σ̂Y are
positive-definite. The cross-covariance matrix Σ̂XY is given
by Σ̂XY = 1

n−1H̄XH̄T
Y . If o = k, the total correlation

between H̄X and H̄Y is calculated as the matrix trace norm
of U = Σ̂

−1/2
X Σ̂XY Σ̂

−1/2
Y :

corr(H̄X , H̄Y ) = tr(UTU)−1/2. (12)

The parameters of DCCA W1
l ,b

1
l ,W

2
m,b

2
m are learnt using

training data, so as to optimize the aforementioned quantity.
To this end, a gradient-descent approach is employed, based
on backpropagation, in order to compute the gradient of the
total correlation (12) with respect to all parameters [14]. A
quadratic penalty with weight λb > 0 is also added in (12) for
regularization. A full-batch optimization is performed, using
the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) method [21], which has been successfully applied in
deep learning problems.

Furthermore, in order to achieve better results, a pre-training
process is applied for the initialization of the optimization
parameters. In more detail, the parameters of each network
layer are initialized by means of a denoising autoencoder [22].
Assuming a training data matrix X, a distorted matrix X̃
is constructed, by adding independent identically distributed
Gaussian noise with zero mean and variance σ2

a. The recon-
structed data are formed as X̂ = WT s(WX̃ + b1T ). The L-
BFGS method is subsequently used to find a local minimum
of the total squared reconstruction error plus a quadratic
penalty ϕa(W,b) = ‖X̂−X‖2F +λa(‖W‖2F +‖b‖22), where
λa is a hyperparameter.



TABLE I
AVERAGE CLASSIFICATION RATES FOR 5 FOLD CROSS-VALIDATION.

Feature type Classifier Classification rate (%) Parameter C
(SVM)Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

CQTM CCA 65.06 77.11 68.67 71.08 78.31 72.05 -
CQTM SVM 67.47 75.9 71.08 71.08 80.72 73.25 0.0156
CQTM + DCCA SVM 63.86 66.27 62.65 65.06 73.49 66.27 0.0078

III. DATASET AND EXPERIMENTAL EVALUATION

In order to evaluate the performance of the proposed
method, a dataset was collected, consisting of Greek folk
music recordings. In more detail, we selected 415 songs
from 8 different geographic regions: 70 from Asia Minor,
55 from Pontus, 45 from Dodecanese, 50 from Epirus, 45
from Peloponnese, 50 from West Macedonia, 50 from the
Northeastern Aegean Islands, and 50 from Crete. From each
recording, an excerpt of 30s duration was extracted after the
first 30s of a recording to exclude any introductory parts. The
recordings were sampled at 22.050 Hz.

Hereafter, the auditory cortical representations are denoted
by CQTM. Following [13], for the CQT we employed 128 fil-
ters which cover 8 octaves between 44.9 Hz and 11 kHz. Also,
the elements of the CQT matrix were raised to the power of
0.1 in order to compress the magnitude of the CQT. Regarding
the wavelet analysis of the second stage, a bank of 2D Gaus-
sian filters was employed with scales ∈ {0.25, 0.5, 1, 2, 4, 8}
(Cycles/Octave) and rates ∈ {±2,±4,±8,±16,±32} (Hz).
The resulting 4D representation was averaged on time and
a 3D cortical representation (frequency, rate, and scale) was
obtained. Subsequently, by re-arranging the elements of the
3D representation into a single vector, each audio recording
was described by a vector x ∈ R7680×1

+ (i.e., 128 frequency
channels × 10 rates × 6 scales). A set consisting of n audio
recordings is represented by a matrix X ∈ R7680×n

+ .
For the DCCA method1, the number of nodes in the input

layer of the first network was equal to the dimensionality of
the cortical representation, i.e., 7680. The input layer of the
second network had 8 nodes (i.e., equal to the dimensionality
of the label vector). The number of nodes of the output layers
o, was set equal to 8. For the number of hidden layers,
different values in the range [3, 10] were tested. Similarly,
different values in {32, 64, 128, 256, 512, 1024} were tested
for the number of nodes in each hidden layer. To determine
the optimal number of hidden layers and nodes, the dataset
was divided into 5 folds. Each fold consists of a subset of
249 samples created by stratified sampling (i.e., retaining 3

5
of the music recordings from each region) used for training, a
development set formed by one fifth of the music recordings
from each region used to search for the optimal values of
the aforementioned parameters as well as the regularization
parameter for slack variables C of the linear SVM2, and a
test set formed by one fifth of the music recordings used to

1https://homes.cs.washington.edu/∼galen/files/dcca.tgz
2https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

measure accuracy. Optimal performance was observed when
the hidden layers of the first and the second network consisted
of c1 = 512 and c2 = 32 nodes, respectively, and both
networks consisted of L = M = 9 hidden layers. Regarding
the hyperparameter values involved in the pre-training phase
of the DCCA algorithm, we used the default values, since
no significant improvement was observed when altering them.
In more detail, a) the regularization parameter λa for the
input, hidden and output layers in the first network was equal
to 4.711 × 10−4, 0.052, and 2.424 × 10−4, respectively;
b) The corresponding values for the second network were
3.153 × 10−4, 5.504 × 10−4, and 2.125 × 10−4; c) In the
first network, the variance σ2

a of the Gaussian noise in the
denoising autoencoder pre-training of input and hidden layers
was set to values 0.1538 and 0.0264, respectively, while for the
second network these values were 0.0096 and 0.1566; d) The
regularization parameters λb, rX and rY were set to values
0.045, 41.67, and 59.06, respectively; e) The convergence
tolerance of the L-BFGS algorithm was set to 10−4 and 10−3

for the first and second network, respectively. The activation
function for all the layers was a sigmoid function based on
the cubic root.

Classification was performed using either a linear SVM
classifier or the CCA method of Section II-B. In the latter
case, correct classification occurs when the predicted label
in (6) is the same with the true label. As can be seen in
Table I, overall the auditory cortical representations achieve
a good performance. This demonstrates that the auditory
cortical representations are not only suitable for Western
music genre classification as shown in [13], but for Greek
folk music classification as well. It is worth noting that the
accuracies measured for both the CCA and the linear SVM
classifiers in each fold do not differ more than 2.41%. In
order to check whether the accuracy difference of 2.41% is
statistically significant, we apply the approximate analysis
in [23]. Let us assume that the accuracies $1 and $2 are
binomially distributed random variables. If $̂1, $̂2 denote
the empirical accuracies, and $ = $̂1+$̂2

2 , the hypothesis
H0 : $1 = $2 = $ is tested at 95% level of significance.
The accuracy difference has variance β = 2$(1−$)

nt
, where nt

is the number of test samples (i.e., 83). For ζ = 1.65
√
β, if

$̂1−$̂2 ≥ ζ, we reject H0 with risk 5% of being wrong. The
aforementioned analysis certifies that the accuracy difference
of 2.41% between the CCA classifier and the linear SVM is
not statistically significant, because ζ=10.33%. This is in par
with the theoretical guarantees on the equivalence of these



Fig. 1. Visualization of the 8-dimensional features in the output of the 1st
network of DCCA using the t-SNE method.

classifiers.
A relatively good performance is observed, when the DCCA

is applied to auditory cortical representations for dimension-
ality reduction and the obtained 8 dimensional features are
classified by the SVMs. The maximum discrepancy in accu-
racy when the 7680 dimensional CQTM and the 8 dimensional
features extracted by DCCA are classified by a linear SVM
is 9.63%. Neither this accuracy difference is found to be
statistically significant, because ζ=11.61%. To obtain a better
insight of the DCCA performance, the t-SNE method [24] was
employed in order to visualize the 8 dimensional features in
the output of the first network of DCCA. The aforementioned
visualization method is an embedding technique, which builds
upon the Stochastic Neighbor Embedding (SNE) [25]. In Fig.
1, the features extracted from the 3rd fold are shown. As
can be observed, the descriptors resulting from the DCCA are
discriminated to a large extent.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the classification of Greek
folk songs according to their region of origin by employing
the auditory cortical representations as feature descriptors for
the music signal. In addition, the application of DCCA to the
auditory cortical representations has been investigated. It has
been demonstrated that both the SVM and the CCA classifiers
yield an equivalent performance. The auditory cortical repre-
sentations have enabled us to overcome the low recognition
rates measured, when mel-frequency cepstral coefficients were
extracted from the music recordings [11]. The classification
of Greek folk songs according to their content (e.g., laments,
marriage, satiric, historical) could be a subject of future
research.
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