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ABSTRACT

Social media sharing platforms enable image content asaseibn-
text information (e.g., user friendships, geo-tags assign images)
to be jointly analyzed in order to achieve accurate imagetation
or successful image recommendation. The context infoonat
expressed frequently in terms of high-order relationshsag the

relations among users, tags, and images. Hypergraphs cdel mo

the aforementioned high-order relations between thetioes (i.e.,

users, user social groups, tags, geo-tags, and images) g&r-hy

edges, whose influence can be assessed by properly estjrtiadin
weights. Here, an efficient adaptive hypergraph weightesgton is
proposed for image tagging. In particular, both equality mequal-
ity constraints enforced during hypergraph learning akenanto
account and an efficient adaptation step selection usinétimgo
rule is proposed. Experiments conducted on a dataset dératens
the superior performance of the proposed approach compatbd
state-of-the-art.

search algorithms.

1. INTRODUCTION

Popular social media sharing platforms, suclkckr?®, Picasa Web

Albunt, or Instagrarﬁ, enable users to describe the content of im-

ages by tagging them. However, quite often, the tags prdvine
the users are inaccurate or redundant. The aforementiaicéthds
motivated research toward automated image tagging. [Zetpét
research effort made so far, achieving satisfactory effagieand ac-
curacy still remain open issues.

In image tagging, the context information (e.g., user filgrips,
geo-tags assigned to images) is of great importance andecar-b
pressed in terms of high-order relations. For example, ¢lagion
engaging a user, an image, and a tag is a third-order retfion
Hypergraphs are suitable to model high-order relationséen het-
erogeneous vertices, obtained by concatenating diff&ieds of ob-
jects (i.e., users, user social groups, tags, geo-tagsireags), with

hyperedges [1, 2]. The influence of each hyperedge can bssasse

by properly estimating its weight [3, 4]. The hypergraphpgithe-
oretical interest and find a wide range of applications inheatat-
ics [5], databases, data mining, biology, complex netwookleting,
multimedia search to mention a few [6].

Image tagging was treated in a “query and ranking” manner an

a graph-based reinforcement algorithm for interrelatedtistype

in [8], employing a fusion parameter to regularize the inflee be-
tween the visual and textual information. In [9], image taggvas
addressed within a hypergraph ranking canvas by enforaiagpg
sparsity constraints. Multi-label image annotation wasfdated as
a regression model with a regularized penalty, exploithmygtruc-
tural group sparsity in [10]. Hypergraph learning was alspliad to
social image search [11, 12].

Here, an efficienadaptivehypergraph weight estimation scheme

is proposed for image tagging, extending the previous wéfkThe
novelty of this paper is in the incorporation of equality amequality
constraints within the optimization problem related to éngraph
learning and the derivation of a gradient search methodt$osa-
lution from first principles. In addition, an efficient adapbn step
selection is proposed, using the Armijo rule. Experimentdcicted
on a dataset of images related to popular Greek landmarkerdem
strate the superior performance of the proposed approanpared
to the state-of-the-art.

The outline of the paper is as follows. In Section 2, the gen-
Index Terms— Image tagging, Hypergraph learning, Gradient eral hypergraph model is introduced and the ranking on arhype

graph is briefly addressed. The adaptive hyperedge weigihtaes
tion is detailed in Section 3. In Section 4, the dataset isrilesd
and the hypergraph construction is explained. Experinheesalts
are presented in Section 5, demonstrating the merits ofrtioped
method. Conclusions are drawn in Section 6.

2. HYPERGRAPH MODEL

In the following, | - | denotes set cardinality. || is the 2 norm of
a vector, and is the identity matrix of compatible dimensions. Let
G(V, E,w) denote a hypergraph with set of verticésand set of
hyperedgesZ to which a real weight functionw is assigned. The

vertex setV is made by concatenating sets of objects of different

type (users, social groups, geo-tags, tags, images). Megsees
and hyperedges form g/ x |E| incidence matrixH with ele-
mentsH (v,e) = 1if v € e and0 otherwise. The vertex and hy-
peredge degrees are obtaineddfy) = >. ., w(e)H(v,e) and
d(e) = >, cv H(v, e), respectively. The following diagonal maitri-
ces are defined: the vertex degree mabix of size|V| x |V, the
hyperedge degree matrRR. of size|E| x |E|, and the|E| x |E|
matrix W containing the hyperedge weights.

Let A = D, ?HWD; 'H”D;, /2. A is a symmetric ma-

&'ix, as the diagonal matricé® andD_ ' commute in multiplica-
tion. Then,L = I — A is known as Zhou'’s normalized Laplacian of

objects was proposed in [7]. A random walk model was proposed’® hypergraph [13]. The elementsAf A(j, ), indicate the relat-

Ihttp://waw. flickr.com
2htt p: // pi casaweb. googl e. com
Shttp://instagram com

edness between the verticeandi. To perform clustering on a hy-
pergraph, one is seeking for a real-valued ranking vetterR'"/,
minimizing the cost functiof2(f) = f7Lf. That is, one requires
all vertices with the same value in the ranking vedttw be strongly
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Fig. 1. Description of the hyperedge weight learning method.

connected [14]. For instance, two images are probably aimil
they are linked with many common tags.

The just described optimization problem was extended talara
ing problem by including the,; regularization norm between the
ranking vectorf and a query vectay € R!V'! [15, 16] This guaran-
tees that the ranking vector does not differ too much froninhil
query. The function to be minimized is then expressed as

U(F) = QF) +9 [If - y|I* @)

we have2 < v; < n + 1, such thaty; — 1 € [1,n] is an index
of a hyperedge weight. The Kuhn-Tucker theorem [17] reguine
Lagrange multipliers to be determined by demanding Yh@tto be

orthogonal toVG; = %, ie.,

VGTVQ =0, j=1,2,...,p ™
It can be shown that:
©
VQ=VP+) ¢ VG =VP+Tc (8)

Jj=1

wherec € R¥ andT is a matrix of sizen x p having a special
structure. In particular, its first column is,, while the remaining
columns have at the rowv; — 1 and zero otherwise. Itsth column
is simply VG;, i.e. T = [VG1|VGz| - - - |[VG,]. Accordingly, the
system of equations (7) can be rewritten as:

r"vQ=r" (VP+Tc)=0cc=—(I''T)"'T"VP, (9)

yielding a closed-form expression ferthat can be further simpli-

whered is a positive regularizing parameter. The best ranking vecfied. Let

tor, f* = arg ming ¥(f), is found to be [15, 16]:

— 19 -1
= It

Image tagging can be cast as a ranking problem [4].
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*
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3. ADAPTIVE HYPEREDGE WEIGHT UPDATING

Letn = |E| andw = (w1, ws, - ,w,)" be formed by the el-
ements lying in the main diagonal . In addition to enforcing
the inequality constraintIw = 1 as in [4], we also requirev;,

Sinactive = Z (VP)H (10)
wi 20

where (V P); denotes the-th element ofVP. By exploiting the

structure off’, it can be found that

—Sinactive

i=1,2,...,n, to be non-negative. The latter inequality ConStraintSSubstituting (11) in (8), we obtain theth element oV, i.e.,

are collectively referred to a& > 0. That is, the following mini-
mization problem is defined:

argmin {W(f) + —|—/<||w||2} st.17w = 1andw > 0 (3)
fow

wherek is a positive regularization parameter. The minimization

problem (3) is solved in alternating fashion, as is illudan Fig. 1.
Obviously, whenw is fixed, the solution fof is given by (2). There-
fore, we shall elaborate on the solution fetr whenf is fixed. Let
P(w) = fTLf 4 x||w||?. In this case, the optimization w.r4 is
read as:

st.1lw =1andw > 0.

4)

argmin P(w)
The new optimization problem (4) is solved by employing geat
descent. By omitting the dependencewrfor notation simplicity,
the Lagrangian of the optimization problem is given by

©
Q=P+> ¢ Gy,

Jj=1

®)

wherec;, j = 1,2, ..., p are the Lagrange multipliers associated to
the p active constraintss; defined as

of

That is, the first constraint’; is the equality constraint, which is
always active. For the remaining active constraints (icg.j > 1),

1Tw—-1=0
w,,j,1:0

forj=1
forj > 1.

(6)

Stnactive ni@(vlp)
1|iactive _ Vo1
c= ot ’ (11)
Swactive — (VP),, 1
0 1:w; =0
(VQ)I = { ) Sinactive P (12)
(VP); — Smactse  otherwise,
where(V P); is given by [4]:
(VP)L = —fT (D;l(iﬂ:)AiAiT — Ez) f + 2kw;. (13)

In (13), A; € RV is thei-th column of A = D, /? H and
=, = diag(A:)D, />A. Observe thaE; is a symmetric matrix
anddiag(A;) is a|V| x |V| diagonal matrix having\; in its main
diagonal.

The gradient descent required®” = w4 — 4,V Q. That s, if

wd'd was active (i.ew' = 0), thenw?®™ = 0. Otherwise,
w;)cw _ w;)ld _ M(VP)Z + L Sinactivc ) (14)
n—p+1

Algorithm 1 summarizes the adaptive weight estimation.

In (14), an arbitrary fixed small adaptation steps used as in
the classical gradient descent [17]. In order to achieveffeckunt
decrease in the objective function between successiaities and
speed up in this way the convergence of the algorithm, theijarm
rule [18] is employed to properly select the adaptation steffhe
Armijo rule states that for sufficiently decreasing the ohje func-
tion at iterationk

Q(w(k)) = fTLE + w|lw(k)|* + > _c; G, (15)
j=1



Algorithm 1 Image tagging via hyperedge weight learning with gra-

dient descent Table 1. Dataset objects, notations, and counts.

Inputs: The objects (i.e., users, groups, tags, geo-tags and inages Object Notation | Count
and their relations. Set the regularization parameteasd . Images Im 1292
Output: Optimized weightsw and the ranking vectd. Users U 440
. o User Groups| Gr 1644

1 Form matrice#, D., D,,, andW, having initialized the hy- Geo-tags Geo 195
peredge weights;. Tags Ta 2366

2 Compute the affinity matrixA = D, *HWD_*H”
D, /2 e RIVIXIVI, Set the query vector € RIV!.

. . ‘V‘ .
3 Find result ranking vectdr € R'"', using (2). ing hierarchical clustering.
4 Compute the gradient P(w) with elements as in (13). The hypergraph structure is displayed in Table 2. The vesgex

5 Update the non-zero weights, using (14). If a weight becomes defined a8/ = Im UU U Gr U GeoU T'a. The incidence matrix
zero, it remains zero for ever. of the hypergrapfH has size5867 x 30924 elements. The dataset

has capture@276 friendship relations antl9127 tagging ones.

6 Having found the new hyperedge weights updatdD.,, and EW represents a pairwise friendship relation between users.
w. The incidence matrix of the hypergraphz*) has size40 x 2276

7 Repeat the steps 2 - 6 until convergence. Find the final rankelements.
ing vectorf. E® represents a user group. It contains all the vertices of the

corresponding users as well as the ones corresponding tastre
group. The incidence matrix of the hypergrapte® — GrE®
has sizg440 + 1644) x 1644 elements.
E® contains a user and an uploaded image, representing a user-

image possession relation. Each image has only one owner. Th

Q(w(k) + pe di) < Q(w(k)) +m e VQT (w(k)) d(k) (16)  incidence matrix of the hypergrapht® — Im E®®) has sizg440+
) ) s 1292) x 1292 elements.
is fulfilled for somen, € (0,1) (e.g.,m = 1077) with d(k) = E™ captures a geo-location relation. This hyperedge set con-
—VQ(w(k)) being the search direction in the steepest descenyingtripletsS of Im, U, andGeo. The incidence matrix of the hy-

the adaptation step can be updatedias= o px—_1, for o € (0, 1]
until the condition

method [18]. pergraphImE® — UE® — GeoE™ has size(1292 + 440 +
125) x 125 elements.
4. DATASET DESCRIPTION AND HYPERGRAPH E®) also containsriplets, Im, U, andT'a. Each hyperedge rep-
CONSTRUCTION resents a tagging relation. The incidence matrix of the fypeh

, o . ImE® —UE® —TaE® has sizg1292 + 440 + 2366) x 19127
The image dataset used in [4] is exploited here as well. Th#sdt.  glements.

was collected fronmFlickr. It contains both indoor and outdoor E®) contains pairs of vertices, which represent two images.
medium sized photos of popular Grgek landmarks, includifg ¢ poth global and local features were used to determine visalat
scenes and landscapes. Uskiligkr API”, a large set of “geotagged”  tjons between images. Firstly, tH®0 nearest neighbors to each
images was downloaded along with valuable informationteeld  jmage were identified using the GIST descriptors [20] angl there
them (id, title, owner, latitude, longitude, tags, imagews). Then,  reqyced to the 5 most similar images to the reference imagesibg

the dataset was filtered based on image views (i.e., the ti@#s  gcaje-invariant feature transform (SIFT) [21]. The incide matrix
the .sp.ecmc image has .been seerfitickr) aqd owner’g uplogdlng of the hypergrapimE(® has sizel 292 x 6460.

statistics. At this point, it was assumed that images withynaews The query vectoy is initialized by setting the entry correspond-
normally depict worth seeing landmarks and owners (USef) W jnq to the test imagén and its owneb to 1. The tagga connected
many uploaded images were active ones, possessing maayr®eci g this image are set equal t(im, ta). The objects correspond-
lations (friends, social groups). The image owners wereif@gs in ing to gr and geo associated to the image ownerare set equal
the dataset. Then, corresponding social informationr{fise social 4 A(o, gr) and A(o, geo), respectively. The query vectsr has a
groups) was crawled and only the groups that had at [e@8mers  |engih of5867 elements. During testing, the tags contained in the
from the dataset as members were kept. The specific catiisali iaqt set were not included in the training procedure.

are summarized in Table 1. The ranking vectof* has the same size and structureya3he

In order to form a proper set of tags, all characters Were conya|yes corresponding to tags are used for image taggingthettop
verted to lower case, unreadable symbols and redundamviaton 4 ked tags being recommended for the test image.

were removed. Next, a vocabulary of unique words was geserat
along with their frequencies. Terms with frequency less thac-
currences were removed from the set of tags and the vocgbBiar 5. EXPERIMENTS
nally, spelling mistakes were corrected and any morphotgiari-
ations merged using the Edit Distance [19].

Having computed pairwise distances according to the “Haver
sine formula®, geo-tags were clustered int@5 distinct clusters us-

The averaged Recall-Precision and fiemeasure are used as fig-
ures of merit. Precision is defined as the number of correetgm-
mended tags divided by the number of all recommended tag=liRe
is defined as the number of correctly recommended tags divigie
“http://ww. flickr.contservices/api the number of all tags the user has actually set. Fhaneasure

Shttp: // ww. novabl e- type. co. uk/ scri pts/ | atl ong.
ht m 6A hypergraph is needed, indeed.




Table 2. The structure of the hypergraph incidence makiand its ~ Table 3. F; measure at various ranking positions for the compared

sub-matrices. methods when the hyperedge weights are initializeg as
EM E©2) E®) E® E®) E(6) Initial weight set| Fi@Ql1 | F1@Q2 | FR@5 | F1@Q10
0 0 ITmE® | ImE® | ImE® | ImE® tow(0) = 1,
UED UE®D UE® UE® UE®) 0 ITH [16] 0.307 | 0.444 | 0.520 | 0.440
0 GrED 0 0 0 0 ITH-HWE[4] 0.349 | 0.556 | 0.675 | 0.517
0 0 0 GooE @ 0 0 [TH-HWEG 0.317 | 0.458 | 0.541 | 0.445
o o o o TaE® o [TH-HWEA 0.420 | 0.676 | 0.720 | 0.560

is the weighted harmonic mean of precision and recall, whiela-

sures the effectiveness of tagging when treating prectsimhrecall Table 4. Fy measure for ITH-HWEG and ITH-HWEA.
as equally important, i.ef; = 2 frectsionliccall, The F; measure Random nial | 7@l | F,@2 | F,@5 | F,@i0
is also measured at several ranking positions. weights

Let us refer to the ranking obtained by the proposed adaptive ITH-HWEG 0.425 | 0.682 | 0.753 | 0.558
weight estimation method with steepest descent as ITH-HWEG ITH-HWEA 0.431 | 0.695 | 0.760 | 0.560

when a fixed adaptation step is used and ITH-HWEA when the
Armijo rule is employed. The method proposed in [4] is rederto

as ITH-HWE and the ranking obtained by (2) is denoted as ITH. | : maos Togging e ok Compured Wi i eo» g
the aforementioned acronyms, ITH stands for Imaging Tapgim T Miwe
Hypergraph, HWE reads as Hypergraph Weight Estimation tla@d oo I

final G and A signals whether a fixed step size or the Armijo rule
has been used in the proposed steepest descent algorithm.

Image Tagging Methods Compared With Initial Weights vg = 1/n

Precision
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1 Fig. 3. Averaged Recall-Precision curves for all methods when the
initial hyperedge weights are randomly initialized.

02 : : : P : : : H The F1 measure at ranking positions 1, 2, 5, and 10 for ITH-
Recal HWEG and ITH-HWEA is listed in Table 4.

The experimental findings indicate that the initializatwfrthe
hyperedge weights affects the image tagging efficiency. Ugeeof
random hyperedge weight initialization combined with therdjo
rule for step size selection is highly recommended, as itaniaes
the best performance.

Fig. 2. Averaged Recall-Precision curves for all methods withahi
hyperedge weights.

For evaluation purposes, atest set containin@f¥ of the tags
and a training set containing the remainifigt are defined. The re-
sults of the image tagging are demonstrated in Fig. 2, in vttie
averaged Recall-Precision curves are plotted when thalihitper-
graph weights are initialized a}§ These curves were obtained by
averaging the Recall-Precision curves o6 images with at least
4 tags. To calculate the recall and precision, thegop ranked tags
are being recommended to any test image. It is seen that the pr
posed method ITH-HWEA outperforms all the methods it is com-
pared to, validating its effectiveness for hyperedge weliggrning.
The ITH-HWEG that employs a fixed adaptation does not yield
performance improvement. The F1 measure at various ramkisig
tions is summarized in Table 3.

Experiments were also conducted with random initial hyggee
weights. The averaged Recall-Precision curves are plotted). 3.

It is seen that both methods ITH-HWEG and ITH-HWEA outper-
form the baseline techniques ITH-HWE [4] and ITH [16].

6. CONCLUSIONS AND FUTURE WORK

In this paper, efficient adaptive hyperedge weight learraigp-
rithms have been proposed for image tagging. The experément
conducted on a collection of images related to Greek sites ha
demonstrated the superiority of the proposed algorithmise ih-
cremental update of an already trained hypergraph leamioggel
could be a topic of future research.
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