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Abstract—In this paper, we present the Kernel Subclass
Support Vector Data Description classifier. We focus on face
recognition and human action recognition applications, where
we argue that sub-classes are formed within the training class.
We modify the standard SVDD optimization problem, so that it
exploits subclass information in its optimization process. We ex-
tend the proposed method to work in feature spaces of arbitrary
dimensionality. We evaluate the proposed method in publicly
available face recognition and human action recognition datasets.
Experimental results have shown that increased performance can
be obtained by employing the proposed method.

I. INTRODUCTION

Face recognition and human action recognition are widely
studied classification problems in image analysis. A typi-
cal face recognition framework consists of four processing
steps, i.e., face detection, feature extraction, dimensional-
ity reduction and classification. Similarly, a human action
recognition framework consists of three processing steps, i.e.,
video segmentation, feature extraction and classification. In the
classification step, face recognition and human action recog-
nition are commonly addressed as multi-class classification
problems. However, there are cases when the use of one-class
classification is also considered since application scenarios
of multi-class classification methods have limitations related
to model expansion and class-specific classification. More-
over, the multi-class classification model does not take class
importance into consideration. For example, in movie post-
production applications, recognizing the lead actor correctly
all the time might be more important than recognizing actors
having a peripheral role. In order to overcome the above
described limitations, we consider employing the Support
Vector Data Description (SVDD) [1] method.

Support Vector Data Description (SVDD) is a support
vector based one-class classifier, initially proposed in [1].
The training phase of this classifier involves determining the
minimum bounding hypersphere which encloses the target
class. Test patterns that fall inside this hypersphere belong
to the target class, or considered as outliers, otherwise. The
SVDD optimization problem attempts to minimize the radius
of the hypersphere with respect to its center. Finally, the
hyperpshere center is expressed as a linear combination of the
determination of support vectors. SVDD has been extended
in order to exploit the fact that removing the non support
vectors from the training set does not affect the classification
model, thus a method that determines redundand training

vectors has been proposed in [2]. Additionally, a method
that determines an optimized gaussian kernel parameter (i.e.,
the sigma) in a fast manner, have been proposed in [3].
Recently, SVDD has been extended in the context of semi-
supervised learning [4]. To this end, relationships between
labeled and unlabeled training patterns, expressed with Nearest
Neighbourhood (kNN) graph structures, are employed in order
to learn a regularized manifold [5], [6].

SVDD is a state-of-the-art classification method, that can ef-
ficiently model the target class with a hypersphere. In order to
improve the SVDD classification performance, a method that
performs the whitening transform in the training data has been
proposed in [7]. That is, the within-class variance is employed
at the SVDD optimization process. In essence, instead of
hypersphere, the solution of [7] resembles a hyperellipse that
tightly encloses the target class. However, in face recognition
and human action recognition problems, we assume that there
are cases where the target class forms sub-classes related
to, e.g., different illumination conditions, different viewing
angles, different image scaling. This assumption is based on
previous work in related fields [8], [9], [10], [11], [12], [13].
Thus, we argue that in order to improve the classification
performance of SVDD, instead of minimizing the global
variance, we should be minimizing the within-class variance
with respect to subclass information.

In this paper, we focus on the supervised one-class classifi-
cation case, for face recognition/verification applications. We
consider the case where the available training data information
originates from only one class, or an important class is present
in the training set. We argue that sub-classes are formed within
the training class, which are not considered by related meth-
ods. We modify the standard SVDD optimization problem,
so that it exploits subclass information in its optimization
process. We extend the proposed method to work in feature
spaces of arbitrary dimensionality. We evaluate the proposed
method in publicly available face recognition and human
action recognition datasets.

The rest of the paper is structured as follows. In Section II,
we briefly overview the standard SVDD. In Section III, we de-
scribe in detail the linear case of the proposed subclass SVDD.
The kernel extension of the proposed method is described
in Section IV. The conducted experiments are described in
Section V. Finally, conclusions are drawn in Section VI.



II. SUPPORT VECTOR DATA DESCRIPTION

The SVDD method aims at generating a hypersphere, with
center a ∈ RD and radius R, which encloses the training
vectors onto a bounded, spherically shaped, area. Let the
vectors xi ∈ RD, i = 1, . . . , N form the target class, from
which we wish to generate the one-class classification model,
by employing the SVDD method. The optimal hypersphere
can be found by solving the following optimization problem:

minimize:
R,ξi,a

R2 + c

N∑
i=1

ξi (1)

subject to : ‖xi − a‖2 ≤ R2 + ξi, (2)
ξi ≥ 0, i = 1, . . . , N, (3)

where ξi, i = 1, . . . , N are the slack variables and c > 0
is a free parameter that allows some training error (i.e., soft
margin formulation), in order to increase the generalization
performance. The equivalent dual-Wolf optimization problem
is given by minimizing:

N∑
i=1

γi κ(xixi)−
N∑
i=1

N∑
j=1

γiγjκ(xixj) (4)

subject to :

0 ≤ γi ≤ c,
N∑
i=1

γi = 1, (5)

where γi is the Lagrange multiplier corresponding to each
constraint (2). For each object xi that satisfies (2), the cor-
responding Lagrange multiplier γi is equal to zero. Thus,
the optimal hypershere center is a linear combination of the
Lagrange multipliers and the support vectors:

a =

N∑
i=1

γixi, (6)

The hypersphere radius R can be calculated by using any
support vector xk whose coefficient satisfies γk > 0 [1], as
follows:

R2 = ‖xk − a‖2. (7)

By expressing the center a in terms of support vectors we
obtain:

R2 = (xk ·xk)−
N∑
i=1

γi(xi ·xk)−
N∑
i=1

N∑
j=1

γiγj(xi ·xj). (8)

The radius (8) is expressed in dot product form. As have
been suggested by [1], all dot products can be replaced with
a kernel function κ(·, ·), which expresses data similarity in
spaces different than RD. This allows the SVDD to find the
optimal hypersphere in spaces of increased dimensionality, i.e.,
by employing a mapping function such as the RBF kernel
function, such that φ(·) 7→ F .

Finally, for a given test sample x ∈ RD, we decide that
it belongs to the target class, if it satisfies the following
inequality:

κ(x,x)−2

N∑
i=1

γiκ(x,xi)+

N∑
i=1

N∑
j=1

γiγjκ(xi,xj) 6 R2. (9)

III. SVDD EXPLOITING SUBCLASS INFORMATION

In the case where the training data form sub-classes, the
standard SVDD optimization would create a loose hyper-
sphere. Thus, we would wish to minimine the dispersion of the
training data with respect to subclass information. Subclasses
can be determined in the input space by applying the k−means
algorithm. By considering the case where k subclasses are
formed within the target class, the within class dispersion can
be expressed as follows:

S =

N∑
i=1

k∑
j=1

Nj
N
eji (xi − x̄j)(xi − x̄j)

T , (10)

where eji is an index denoting that the training data xi belongs
to the j−th subclass (i.e., eji = 1), and x̄j is the average
vector of the j−th subclass. The number of subclasses k can
either be set manually based on the properties of the problem
at hand, or be automatically determined by applying k-fold
(e.g., 5-fold) cross-validation. In order to incorporate subclass
information in the SVDD optimization process, we solve the
following optimization problem:

minimize:
R,ξi,a

R2 + c

N∑
i=1

ξi (11)

subject to : (xi − a)
T
S−1 (xi − a) ≤ R2 + ξi, (12)

ξi ≥ 0, i = 1, . . . , N, (13)

where a is the hypersphere center, R is the hypersphere radius,
ξi are the slack variables and c is a trade-off parameter between
training error and generalization performance. By employing
a vector u = S

1
2a, the optimization problem can be solved

by determining the saddle points of the Lagrangian:

L = R2 + c

N∑
i=1

ξi −
N∑
i=1

βiξi−

−
N∑
i=1

γi

(
R2 + ξi − ‖S−

1
2xi − u‖2

)
, (14)

which lead to the following optimality conditions:

ϑL
ϑR

= 0⇒
N∑
i=1

γi = 1, (15)

ϑL
ϑξi

= 0⇒ βi = c− γi, (16)

ϑL
ϑu

= 0⇒ u =

N∑
i=1

γiS
− 1

2xi. (17)



Condition (16) can always be met if we demand 0 ≤ γi ≤ c,
thus the Lagrange multipliers βi can be removed. From (17),
the hypersphere center a can be found as follows:

a = S−1Xγ, (18)

where γ ∈ RN is a vector containing the Lagrange multipliers.
Every training pattern xi which satisfies (12) (i.e., ξi = 0),
falls inside the hypersphere and, thus, its corresponding La-
grange multiplier is equal to zero.

In any other case, γi > 0 and xi is a support vector. The
optimal radius can be recovered from any support vector xk
as follows:

R2 = ‖xk − a‖2 = ‖xk − S−1Xγ‖2. (19)

Having calculated the optimal center and radius, in order to
make a decision whether a test pattern x ∈ RD falls inside
the hypersphere, we calculate the following decision value:

f(x) = R2 − ‖x− a‖2, (20)

where the test pattern is classified to the target class when
f(x) ≥ 0, or considered an outlier otherwise.

By expressing the radius and the center in terms of support
vectors, using the equations (18) and (19), we obtain the
following solution:

f(x) = ‖xk − S−1Xγ‖2 − ‖x− S−1Xγ‖2. (21)

Next, in order to obtain γ, we reformulate the Lagrangian
defined in (14), exploiting (15), (16) and (17), as follows:

L =

N∑
i=1

γixiS
−1xi −

N∑
i=1

N∑
j=1

γiγjxiS
−1xj (22)

Finally, the solution is obtained by solving the following
optimization problem:

minimize:
γi

N∑
i=1

γixiS
−1xi −

N∑
i=1

N∑
j=1

γiγjxiS
−1xj (23)

subject to :0 ≤ γi ≤ c,
N∑
i=1

γi = 1. (24)

Here, it should be noted that parameter c can take any positive
value. However, setting a value c = 0, eliminates the chance
of convergence, since the constraints in (24) will never be
met. Moreover, setting any value c ≥ 1, leads to the same
solution for c = 1, since the support vector coefficients should
satisfy

∑N
i=1 γi = 1. Thus, the parameter c should be limited

to values of (0, 1].

IV. KERNEL SUBCLASS SVDD

In the previous section we have described the linear case
where the subclasses where determined in the input space RD.

In order to express subclass information in spaces of arbitrary
dimensionality, we decompose the matrix S as follows:

S =

N∑
i=1

k∑
j=1

Nk
N
ei(xi − x̄j)(xi − x̄j)T

= X(
1

N

k∑
j=1

Njeje
T
j )XT = XMXT , (25)

where X ∈ RD×N is the datamatrix and ej ∈ RN is a vector
having elements eji = 1 if the training data xi belongs to the
j−th subclass, or zero otherwise.

By employing the RBF kernel function, the matrix S would
have infinite dimensions, i.e.:

S = ΦMΦT , (26)

where Φ = [φ(x1, . . . ,xN ] is a matrix that contains the
training data representations in the feature space F . However,
if RD is of very high dimensionality, e.g., D � N , then the
matrix S might not be invertible in such space. Moreover,
this would be the case when a mapping function such as the
RBF kernel function is employed. In order to avoid singularity
issues, we employ a regularized version of S, such that:

S̃ = S + rI, (27)

where r is a regularization parameter allowing the matrix S
to be invertible, and I is an identity matrix of appropriate
dimensions. By exploiting the Woodbury identity, the inverse
of S̃ is given by:

S̃−1 =
1

r
I − 1

r2
Φ

(
M−1 +

1

r
K

)−1
ΦT , (28)

where K = ΦTΦ is the so-called kernel matrix. Finally, when
a kernel function is employed (i.e., φ(xi) instead of xi) and
by replacing (28) in the the Lagrangian function in (22), we
obtain:

L =

N∑
i=1

γi

(
1

r
kii −

1

r2
kTi (M−1 +

1

r
K)−1ki

)
−

−
N∑
i=1

N∑
j=1

γiγj

(
1

r
kij −

1

r2
kTi (M−1 +

1

r
K)−1kj

)
, (29)

where kij = κ(xi,xj) expresses data similarity in F between
xi and xj , and ki is the i−th column of the kernel matrix
K. By observing the optimization problem in (29), it is of the
same form as the standard SVDD optimization problem (4),
that can be solved using the modified kernel:

κ̃(xi,xj) =
1

r
κ(xi,xj)−

1

r2
kTi

(
M−1 +

1

r
K

)−1
kj . (30)

Finally, in order to decide whether a test sample x ∈ RD
belongs to the training class, we can employ the standard
SVDD solution (9), using the modified kernel found in (30).



V. EXPERIMENTS

This section presents the experiments conducted in order
to evaluate the performance of the proposed Subclass SVDD
method in face recognition and human action recognition.
To this end, we have employed publicly available datasets,
which have been widely adopted in relevant work. In all our
experiments, we have applied the proposed subclass SVDD,
along with the One-Class SVM [14] (OC-SVM), the stan-
dard SVDD [1] and the minimum variance SVDD [7] (MV-
SVDD), which is a special case of the proposed method
when we assume that no subclasses are formed (i.e., the
number of subclasses is equal to 1). For all cases, we report
the average obtained g-mean rate between all classes [15],
which is suitable for imbalanced binary classification problems
(gmean =

√
precision× recall).

In our first set of experiments, we have employed classic
face recognition datasets, including the AR [16], ORL [17]
and Yale [18] datasets. The datasets contain 2600, 400, and
2432 frontal facial images from 100, 40 and 38 subjects,
respectively. For all cases, we have resized the images to
40 × 30 and vectorized them to produce a D = 1200 vector
for each facial image. We have split each dataset in 5 training
and test sets. We have employed 4/5 of the dataset for training
and left the 1/5 for testing separately. We have repeated the
procedure 5 times (each for a different test set) and report
the average performance obtained for each class. Additionally,
we have employed the competing algorithms in the PubFig83
+ LFW Dataset [19]. We have employed the feature vectors
(HOG, LBP, and Gabor wavelet features reduced to 2048
dimensions with PCA), which were extracted from 13,002
facial images representing 83 individuals from PubFig83,
divided into 2/3 training (8720 faces) and 1/3 testing set (4,282
faces), as well as 12,066 images representing over 5,000 faces
which were used as a distractor set from LFW. For each of
the 83 individuals, we have employed the training images for
this class and tested on the respective test set of this class, as
well as 200 randomly selected images for the distractor set.
Experimental results in Face recognition datasets are shown
in Table I.

TABLE I
AVERAGE G-MEANS RATES IN FACE RECOGNITION DATASETS

ORL AR YALE PubFig83+ LFW
OC-SVM 76.34 71.41 63.71 76.02
SVDD 77.08 70.39 63.42 76.55
MV-SVDD 77.08 71.88 65.13 77.45
Proposed 78.03 73.40 66.59 77.94

For human action recognition, we have employed the
i3DPost multi-view action database [20], the IMPART Multi-
modal/Multi-view Dataset [21], as well as the Hollywood2
[22] and Hollywood3D [23] publicly available datasets.
The i3DPost dataset contains 512 segmented high-resolution
(1080 × 1920 pixel) videos depicting eight human actors
performing eight activities. The IMPART dataset consists of
a multi-camera outdoor setup, which consists of 14 fixed

cameras placed around each subject, where each subject is
performing 12 actions. The Hollywood2 dataset consists of
810 training and 884 test video segments, of 12 activities.
Finally, the Hollywood3D dataset consists of 359 train and 307
test stereoscopic video segments depicting 14 actions. In our
experiments, we have employed only the right video channel.

In order to obtain vectorial video representations for each
video segment depicting one activity, we have employed
the dense trajectory-based video description [24]. This video
description calculates five descriptor types, namely the His-
togram of Oriented Gradients, Histogram of Optical Flow, Mo-
tion Boundary Histogram along direction x, Motion Boundary
Histogram along direction y and the normalized trajectory co-
ordinates, on the trajectories of densely-sampled video frame
interest points that are tracked for a number of consecutive
video frames (7 frames are used in our experiments). We haved
employed these video segment descriptions in order to obtain
five video segment representations by using the Bag-of-Words
model [10], and combined them with kernel methods using a
late fusion approach [25].

In the i3DPost and IMPART datasets, we have employed
a 3-fold cross validation procedure, where we have split
the datasets in 3 sets, mutually exclusive. Each set included
videos depicting all activities. We have employed the videos
depicting each distinct activity from two sets in order to train
the classifiers, and tested on the remaining one. For each
activity, we have obtained g-mean metric. This procedure was
repeated for all activities, and repeated 3 times for each fold.
In the Hollywood2 and Hollywood 3D datasets, we employed
the standard train and test videos, provided by the authors
of [22], [23]. The average g-mean metrics obtained for all
activities between the folds is depicted in Table II. As can

TABLE II
AVERAGE G-MEANS RATES IN HUMAN ACTION RECOGNITION DATASETS

IMPART i3DPost Hollywood2 Hollywood3D
OC-SVM 61.45 74.53 58.54 55.90
SVDD 61.55 74.19 58.29 56.15
MV-SVDD 62.70 74.43 59.84 58.61
Proposed 63.10 74.86 61.19 58.72

be seen in both tables, exploiting subclass information in the
SVDD optimization process leads to increased classification
performance.

VI. CONCLUSION

In this work, we have described an extension of the SVDD
so that it exploits subclass information in its optimization
process. We have evaluated the proposed method in face
recognition and human action recognition problems, obtaining
increased performance. Future work could include employing
additional optimization criteria in the SVDD optimization
process.
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[6] J. Muñoz-Marı́, F. Bovolo, L. Gómez-Chova, L. Bruzzone, and G. Camp-
Valls, “Semisupervised one-class support vector machines for classifi-
cation of remote sensing data,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 48, no. 8, pp. 3188–3197, 2010.

[7] S. Zafeiriou and N. Laskaris, “On the improvement of support vector
techniques for clustering by means of whitening transform,” IEEE Signal
Processing Letters, vol. 15, pp. 198–201, 2008.

[8] G. Arvanitidis and A. Tefas, “Exploiting graph embedding in support
vector machines,” IEEE International Workshop on Machine Learning
for Signal Processing (MLSP), pp. 1–6, 2012.

[9] A. Iosifidis, A. Tefas, and I. Pitas, “Minimum class variance extreme
learning machine for human action recognition,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 23, no. 11, pp. 1968–
1979, 2013.

[10] ——, “Discriminant bag of words based representation for human action
recognition,” Pattern Recognition Letters, 2014.

[11] ——, “Graph embedded extreme learning machine,” IEEE Transactions
on Cybernetics, vol. 46, no. 1, pp. 311–324, 2016.

[12] V. Mygdalis, A. Iosifidis, A. Tefas, and I. Pitas, “Video summarization
based on subclass support vector data description,” IEEE Symposium
Series on Computational Intelligence (SSCI), IEEE Symposium on
Computational Intelligence for Engineering Solutions (CIES), pp. 183–
187, 2014.

[13] ——, “Exploiting subclass information in one-class support vector
machine for video summarization,” IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 2259–2263,
2015.

[14] B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[15] M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for the
detection of oil spills in satellite radar images,” Machine learning,
vol. 30, no. 2-3, pp. 195–215, 1998.

[16] A. M. Martinez, “The ar face database,” CVC Technical Report, vol. 24,
1998.

[17] F. Samaria and A. Harter, “Parameterisation of a stochastic model for
human face identification,” IEEE Workshop on Applications of Computer
Vision, 1994.

[18] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few
to many: Illumination cone models for face recognition under variable
lighting and pose,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, no. 6, pp. 643–660, 2001.

[19] B. Becker and E. Ortiz, “Evaluating open-universe face identification on
the web,” IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 904–911, 2013.

[20] N. Gkalelis, H. Kim, A. Hilton, N. Nikolaidis, and I. Pitas, “The i3dpost
multi-view and 3d human action/interaction database,” Conference for
Visual Media Production (CVMP), pp. 159–168, 2009.

[21] H. Kim and A. Hilton, “Influence of colour and feature geometry on
multi-modal 3d point clouds data registration,” International Conference
on 3D Vision (3DV), vol. 1, pp. 202–209, 2014.

[22] M. Marszalek, I. Laptev, and C. Schmid, “Actions in context,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2929–2936, 2009.

[23] S. Hadfield and R. Bowden, “Hollywood 3d: Recognizing actions in
3d natural scenes,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3398–3405, 2013.
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