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ABSTRACT

A novel method for Visual Voice Activity Detection (V-VAD)
that exploits local shape and motion information appearing
at spatiotemporal locations of interest for facial region video
description and the Bag of Words (BoW) model for facial
region video representation is proposed in this paper. Fa-
cial region video classification is subsequently performed
based on Single-hidden Layer Feedforward Neural (SLFN)
network trained by applying the recently proposed kernel
Extreme Learning Machine (kELM) algorithm on training
facial videos depicting talking and non-talking persons. Ex-
perimental results on two publicly available V-VAD data sets,
denote the effectiveness of the proposed method, since bet-
ter generalization performance in unseen users is achieved,
compared to recently proposed state-of-the-art methods.

Index Terms— Voice Activity Detection, Space-Time In-
terest Points, Bag of Words model, kernel Extreme Learning
Machine

1. INTRODUCTION

The task of identifying silent (vocal inactive) and non-silent
(vocal active) periods in speech, called voice activity detec-
tion (VAD) has been widely studied for many decades using
audio signals. In the last two decades, though, considerable
attention has been paid to the use of visual information as
an aid to the traditional Audio-only Voice Activity Detection
(A-VAD), due to the fact that, contrary to audio, visual in-
formation is insensitive to environmental noise and can, thus,
be of help to A-VAD methods for speech enhancement and
speech source separation in noisy conditions.

The approaches proposed in the literature can be roughly
divided in model-based and model-free ones, with the for-
mer requiring a training process, where positive and nega-
tive paradigms are employed for model learning and the latter
not performing direct training, thus circumventing the need
for an a-priori knowledge of the classes at the decision stage.
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Moreover, either visual or audiovisual data features can be ex-
ploited. In the latter case, combination of the two modalities
can be achieved in two different ways, either by combining
the features themselves (feature/early fusion) or by perform-
ing two separate uni-modal recognition stages and fusing their
results (decision/late fusion).

Model-free V-VAD methods, usually rely solely on com-
binations of speaker-specific static and dynamic visual data
parameters, like lip contour geometry and motion [1], or in-
ner lip height and width trajectories [2] that are compared
to appropriate thresholds for decision making. Emphasis is
given on dynamic parameters due to the fact that identical
lip shapes can be encountered both in silent and non-silent
frames, making static features untrustworthy. In both these
approaches, there is no discrimination between speech and
non-speech acoustic events, which are thus handled as non-
silent sections. Another model-free approach is proposed in
[3], where signal detection algorithms are applied on mouth
region pixel intensities along with their variations.

Concerning model-based V-VADs, features like lip open-
ing, rounding and labio-dental touch (a binary feature indicat-
ing whether the lower lip is touching the upper teeth) for lip
configuration followed by motion detection and SVM classi-
fication are proposed in [4], in an attempt to distinguish be-
tween moving and non-moving lips and then between lip mo-
tion originating either from speech or from other face/mouth
activities, e.g., from facial expressions [1, 2]. Such a VAD
system can constitute the first stage of a Visual Speech Recog-
nition (VSR) system. The discriminative power of static and
dynamic visual features in V-VAD is investigated in [5] where
the predominance of dynamic ones is highlighted. The same
approach is also adopted in [6], where facial profile as well as
frontal views are used. Though not providing as much useful
information as the frontal ones, facial profile views are proven
to be useful in VAD.

An early-fusion model-based AV-VAD approach is intro-
duced in [7]. 2D discrete cosine transformations (2D-DCTs)
are extracted from the visual signal and a pair of GMMs is
used for classification of the feature vector. V-VAD accuracy
is quite high in the speaker-dependent case. However, it dra-
matically decreases in the speaker-independent case experi-
ments, conducted on a simplistic dataset called GRID [8].



A new approach to V-VAD is introduced in this paper,
regarding it as an action recognition problem. The Space
Time Interest Point (STIP) detector [9] is utilized in order
to detect video frame interest points that undergo abrupt in-
tensity changes along space and time directions, Histogram
of Oriented Gradient (HOG) and Histogram of Optical Flow
(HOF) descriptors are calculated on each STIP video location
and concatenated so that the Bag of Words (BoWs) model
can be exploited in order produce a compact video repre-
sentation. Classification is performed by applying a kernel
Extreme Learning Machine classifier (kELM) [10, 11] for
Single-hidden Layer Feedforward Neural (SLFN) network
training. The proposed approach is evaluated on two publicly
available data sets, namely GRID [8] and CUAVE [12] and
experimental results denote that it can outperform recently
proposed state-of-the-art methods on these databases.

The remainder of this paper is organized as follows. The
proposed V-VAD approach is described in Section 2, the data
sets used for evaluating our method performance and the re-
spective experimental results are presented in Section 3 and
conclusions are drawn in Section 4.

2. PROPOSED METHOD

The proposed method operates on grayscale facial region
videos, extracted by applying face detection and tracking
[13, 14] techniques. After determining the facial Regions of
Interest (ROIs) in each video sequence, the facial ROIS are
cropped and the resulting facial images are sized to fixed size
of H × W , thus producing the facial videos. The proposed
V-VAD method is subsequently applied. In this Section,
the proposed V-VAD method steps are described in detail,
starting from the STIP-based facial video description.

2.1. STIP-based video description

Let U be an annotated facial video database containing N
videos depicting human faces. In this paper, the Harris3D
detector [15], a spatiotemporal extension of the Harris de-
tector [16], is employed in order to detect video locations,
where the image intensity values undergo significant spa-
tiotemporal changes. After STIP localization, each facial
video is described in terms of local shape and motion by a
set of HOG/HOF descriptors (concatenation of l2 normal-
ized HOG and HOF descriptors), namely HOG/HOF feature
vectors pij ∈ RD, i = 1, . . . , N, j = 1, . . . , Ni, where
i refers to the facial video index and j indicates the STIP
index detected in facial video i. In all our experiments, the
implementation [17] that is publicly available has been used
and the dimensionality of the obtained HOG/HOF vectors is
equal to D = 162.

2.2. BoW-based video representation

In the training phase, HOG/HOF vectors calculated on all
training facial videos are employed in order to produce
HOG/HOF vector prototypes, forming a codebook. This is
achieved by applying K-Means clustering, so as to minimize
the within-cluster scatter:

N∑
i=1

Ni∑
j=1

K∑
k=1

αijk∥pij − zk∥2, (1)

where αijk = 1, if pij is assigned to cluster k (having cardi-
nality nk =

∑
αijk) and αijk = 0 otherwise. The codebook

vectors zk ∈ RD, k = 1, . . . ,K are determined to be the
mean cluster vectors:

zk =
1

nk

N∑
i=1

Ni∑
j=1

αijkpij . (2)

The optimal action codebook cardinality (size) K is deter-
mined by applying a line search strategy, as will be explained
in Section 3.

After codebook calculation, each action video can be
represented by exploiting the similarity of the corresponding
HOG/HOF vectors pij to each of the action codebook vectors
zk. This is usually performed by applying hard vector quan-
tization, i.e., by assigning each HOG/HOF vector pij to the
closest action codebook vector zk and thus determining the
vectors qi, i = 1, . . . , N , which are l1 normalized in order to
produce the facial vectors si, i.e.,:

sik =
qik∑K

n=1 qin
. (3)

After the training facial vectors si have been obtained,
they are employed for training a SLFN network by applying
the kELM algorithm [10, 11], as will be described in the fol-
lowing.

2.3. Neural Network-based classification

After the facial vectors si, i = 1, . . . , N have been calculated,
they are employed, along with the corresponding talking/non-
talking labels ci, in order to train a SLFN network, which
should consist of K input, L hidden and one output neurons,
since the problem at hand is a two-class problem. The number
L of hidden layer neurons is, usually, much greater than the
number of classes involved in the classification problem [10,
18].

The network targets ti, i = 1, . . . , N , each corresponding
to a facial vector si, are set to ti = 1 or ti = −1, depend-
ing on whether the facial vector corresponds to a talking or a
non-talking human face, respectively. In ELM-based classifi-
cation schemes, the network input weights Win ∈ RK×L and
the hidden layer bias values b ∈ RL are randomly assigned,
while the network output weights w ∈ R1×L are analytically
calculated. Let vj and wj denote the j-th column of Win

and the j-th element of w, respectively. For a given activation



function Φ(), the output oi of the SLFN network correspond-
ing to the training action vector si is calculated by:

oi =

L∑
j=1

wj Φ(vj , bj , si). (4)

Many activation functions Φ() can be used for the calculation
of the network hidden layer outputs, such as sigmoid, sine,
Gaussian, hard-limiting and Radial Basis Functions (RBF).
In our experiments, the RBF − χ2 activation function has
been employed, as will be explained in Section 3.

By storing the network hidden layer outputs correspond-
ing to the training facial vectors si, i = 1, . . . , N in a ma-
trix Φ,equation (4) can be expressed in a matrix form as o =
ΦTw and by allowing small training errors in order to in-
crease robustness to noisy data, the network output weight w
can be obtained by solving:

Minimize: J =
1

2
∥w∥22 +

c

2

N∑
i=1

∥ξi∥22 (5)

Subject to: wTϕi = ti − ξi, i = 1, . . . , N, (6)

where ξi is the error corresponding to training facial vector
si, ϕi is the i-th column of Φ denoting the si representation in
the ELM space and c is a parameter denoting the importance
of the training error in the optimization problem. The optimal
value of parameter c is determined by applying a line search
strategy using cross-validation. The network output weight w
is finally obtained by:

w = Φ

(
K+

1

c
I

)−1

t, (7)

where K ∈ RN×N is the ELM kernel matrix, having elements
equal to [K]i,j = ϕT

i ϕj [11, 19].
By using (7), the network response ol for a test vector

xl ∈ RD is given by:

ol = WT
outϕl = T

(
ΦTΦ+

1

c
I

)−1

kl, (8)

where kl ∈ RN is a vector having elements equal to kl,i =

ϕT
i ϕl.

In most applications where ELM-based classification is
performed, classification decision is made solely based on the
sign of ot. However, due to the fact that we are mainly inter-
ested in getting high precision values, i.e., high true positive
rate, a threshold α was introduced in the training phase and
fine tuning was performed in order to identify the threshold
value giving the best precision values.

2.4. Facial video classification (test phase)

In the test phase, a test facial video is introduced to the
proposed method. STIP video locations are detected and
HOG/HOF descriptors are calculated, l2 normalized and
concatenated in order to form the corresponding HOG/HOF
feature vectors ptj ∈ RD, j = 1, . . . , Nt. ptj are quantized

by using the codebook vectors zk ∈ RD, k = 1, . . . ,K pro-
duced in the training phase in order to determine the vector
qt ∈ RK , which is l1 normalized in order to produce the
facial vector st. st is subsequently introduced to the trained
kELM network and its response ot is obtained, resulting in the
test facial video classification to the talking class if ot ≥ α,
or to the non-talking class if ot < α.

3. EXPERIMENTS

Experiments conducted in order to evaluate the performance
of the proposed approach on visual voice activity detection
are presented here. Two publicly available data sets, namely
CUAVE and GRID, were used to this end, a short description
of which is provided in the following subsections. Experi-
mental results are subsequently given.

The optimal values of the parameters used in our method
have been determined by applying a grid search strategy. That
is, multiple experiments were conducted by using the values
c = 10r, r = −6, . . . , 6 and α = 0.1e, e = 0, . . . , 5 and
the best obtained performance is reported. The adoption of
the training facial vectors si, i = 1, . . . , N for the determina-
tion of the network hidden layer weights has been observed
to provide satisfactory performance and, thus, L = N was set
and the training vectors were used for Win in all the reported
experiments. Due to the fact that the RBF − χ2 similarity
metric provides the state-of-the-art performance [17, 18] for
BoW-based video representations, RBF−χ2 activation func-
tion is used for the network hidden layer outputs calculation,
i.e.:

Φ(si,vj , b) = exp

(
1

2b

D∑
d=1

(sid − vjd)
2

sid + vjd

)
, (9)

where the value b is set equal to the mean χ2 between the
training data xi and the network input weights vj .

3.1. The CUAVE Dataset

CUAVE [12] is a speaker-independent data set being used for
voice activity detection, lip reading and speaker identifica-
tion. It consists of videos of 36 male and female speakers
(one video per speaker) with different skin complexions, ac-
cents and facial attributes, recorded both individually and in
pairs uttering isolated and connected digits standing still or
slightly moving in front of a simplistic background of solid
color. The facial videos were extracted from the originals at a
resolution of 195× 315 pixels.

Experiments on this data set are usually conducted by
performing multiple training-test rounds (sub-experiments),
omitting a small percentage of the speakers and using 80%
of the remaining for training and the rest 20% for testing, as
suggested in [5, 6]. The performance of the evaluated method
is subsequently measured by reporting the mean classification
rate over all sub-experiments.



3.2. The GRID Dataset

The GRID corpus [8] is a collection of 34 male and female
speakers uttering 1000 sentences each, standing perfectly still
in front of a solid-color background. The sentences constitut-
ing the corpus are short and simple ones, of a standard syntax
never encountered in real speech. The highest available data
set resolution was selected for our experiments and the facial
videos were extracted at a resolution of 300× 300 pixels.

Both the speaker-dependent and speaker-independent ex-
perimental settings are widely adopted on this data set, as
in [7], where the speaker-dependent experiment is conducted
employing the videos of two speakers for training and those
of another one for testing, while the speaker-independent us-
ing 80% of a speaker videos for training and the other 20%
for testing.

3.3. Experimental Results

The proposed method has been applied on the two data sets
by using the experimental protocols suggested in [5, 6, 7]
and briefly described in subsections 3.1 and 3.2. It should be
noted, though, that due to the fact that video-based classifica-
tion is normally conducted by the proposed method, a prepro-
cessing step of the data sets was necessary so that frame-based
results were obtained and compared to those reported in the
above papers. In addition, the facial video representation and
description techniques used are such that when no or slight
movements are encountered in a facial video, points of inter-
est cannot be detected, and thus no descriptors are calculated
either. Such facial videos are omitted from the classification
process, but are taken into consideration in the calculations of
the performance metrics used for method evaluation, consid-
ered as correctly classified visually silent examples.

More specifically, a sliding window of length equal to 7
frames moving with step equal to 1 frame was applied on
the original videos of the CUAVE data set, splitting them in
smaller parts and labels were assigned to the resulting videos
using majority voting on the labels of the frames constituting
them. Frame based classification, as in [5, 6], was thus per-
formed, as the estimated labels were considered to refer to the
middle frame of each short video. The sliding window length
was chosen in such a way that the number of frames taking
part in the classification of a video was equal to the num-
ber of frames used for the calculation of the dynamic features
exploited by methods [5, 6]. A similar approach was also
adopted for the GRID data set, where window of length 3
frames was used.

Comparison results with state-of-the-art methods evalu-
ating their performance on the CUAVE and GRID data sets
are provided in Tables 1 and 2, respectively. The metrics re-
ported, are half total error rate (HTER) for the CUAVE data
set and classification accuracy (CA) for the GRID data set.
The performance of our previous method [3] is also provided.
As can be seen, the proposed method outperforms the meth-

ods in [5, 6] obtaining half total error rates lower than half of
those reported by them on the two experimental setups used
in the CUAVE data set. On the other hand, method [3] per-
forms surprisingly poorly, maybe due to the fact that the facial
videos used were of a quite low quality, thus hindering its es-
timations, which are based on intensity values.

Table 1. Comparison results on the CUAVE dataset.
CUAVE (HTER) Experiment [5] Experiment [6]

Method [3] 47.1% 47.2%
Method [5] 25.6% -
Method [6] - 25.9%

Proposed method 11.3% 11.7%

As far as the GRID data set is concerned, the proposed
method outperforms the method in [7] by 15.5% in the
speaker-independent setup, highlighting its generalization
ability in unseen users, while it achieves worse performance
on the speaker-dependent experimental setting. The latter
fact indicates the weakness of our method to exploit speaker-
related features in order to enhance its performance, contrary
to what is the case with method [7], whose performance is
much better in the speaker-dependent experiment than in
the speaker-independent. Moreover, method [3] also seems
to perform quite better in this data set than in the CUAVE,
achieving, in the speaker-independent experiment, classifi-
cation accuracy only 4.2% lower than that reported in [7],
which is not remarkably increased in the speaker-dependent
setup, though.

Table 2. Comparison results on the GRID dataset.
GRID (CA) speaker-independent speaker-dependent

experiment experiment
Method [3] 67.8% 68.3%
Method [7] 72.0% 97.0%

Proposed method 87.5% 87.4%

Overall, it can be seen that the proposed method achieves
great generalization ability on new users, since in such ex-
perimental settings it outperforms the relating state-of-the-art
methods [5, 7] in a large extend. However, it cannot effi-
ciently exploit speaker-dependent features in order to achieve
better classification results.

4. CONCLUSION

A novel method for Visual Voice Activity Detection ex-
ploiting local shape and motion information appearing at
spatiotemporal locations of interest for facial video descrip-
tion and the BoW model for facial video representation was
proposed in this paper. Neural Network-based classifica-
tion based on the ELM classifier using the BoW-based facial
video representations leads to satisfactory classification per-
formance and experimental results on two publicly available
data sets denote the effectiveness of the proposed method,
since it outperforms recently proposed state-of-the-art meth-
ods in user independent experimental settings.
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