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ABSTRACT

An important aspect when sharing images in social networks
is the tags the images are annotated with. Another closely
related problem is the ability to successfully recommend im-
ages to users. An automatic image annotation and recommen-
dation system is proposed based on Parallel Factor Analysis
2 (PARAFAC2). Here, PARAFAC2 is applied to a collection
of three matrices, namely the image-feature matrix, whose
columns are representations capturing the visual appearance
of images, the image-tag matrix, whose columns indicate the
tags associated with each image, and the image-user matrix,
whose columns identify who has uploaded or is associated to
each image. PARAFAC2 is able to harness the multi-tag and
the multi-user information for reducing the dimensionality of
the feature vectors extracted from the images. That is, by pro-
jecting the feature vector onto the semantic space derived via
PARAFAC2, a sketch (i.e., a coefficient vector of reduced di-
mensions) is obtained. To predict the tags to be assigned to
a test image, the test image sketch is multiplied by the left
singular vectors of the image-tag matrix, yielding a tag vec-
tor. Similarly, to recommend users who might be interested
to a test image, the sketch is multiplied by the left singular
vectors of the image-user matrix, yielding a recommendation
vector. Promising results are demonstrated when the afore-
mentioned framework is applied to an image dataset of Greek
popular tourist landmarks extracted from Flickr, using a 10-
fold cross-validation experimental protocol.

Index Terms— Automatic Image Tagging, Image Rec-
ommendation, Multi-label Classification, PARAFAC2.

1. INTRODUCTION

The explosive growth of digital technologies, the emergence
of social networks, and the deployment of popular photo-
sharing web services (e.g., Flickr, Instagram, PhotoBucket)
has lead to an exponential growth of the number of images
hosted and shared on the Web as well as the creation of large
image databases. To leverage the asset of such voluminous
information, the images should be annotated with tags, de-

scribing their content. Most photo-sharing websites ask the
users to define the textual content of the images or the videos
they upload. Image annotation or image tagging is the pro-
cess of adding metadata to the digital content in the form of
captioning or keywords [1].

Many research efforts in image annotation focus on
content-based image retrieval, where images are indexed
and retrieved by resorting to low-level features, such as color,
shape, or texture. A regression model with a regularized
penalty is developed to annotate images with multiple labels
in [2]. For each label, different groups of heterogenous fea-
tures are selected, employing structural group sparsity. A
multi-label sparse coding framework for feature extraction
and classification within the context of automatic image an-
notation is also proposed in [3]. In [4], the authors argue
that image regions should be annotated with tags in order to
cope with the diversity of web image content. That is, in-
stead of annotating a whole image, tags are assigned to image
regions thanks to spatial group sparse coding. Many works
on automatic image tagging use graphs and hypergraphs. In
[5], a unified graph and a random walk based framework
is proposed to bridge the semantic gap between the image
content and the tags. In [6], a graph based automatic image
annotation and semantic image retrieval approach is also pro-
posed. The authors develop a bi-relational graph model that
comprises an image similarity graph and a graph depicting
label correlations and connect them by an additional bipartite
graph induced from label assignments. [7] deals with the im-
age annotation problem within the social media environment.
The authors propose a graph based tagging reinforcement
method, where the relations among the tags, the image fea-
tures and users’ friends are taken into consideration. The
recommendation problem is addressed in [8], where a sparse
linear model is created in order to make recommendations to
users that are based solely on the user’s profile. The prob-
lem of image tag imprecision is addressed in [9] as a convex
optimization problem, which simultaneously minimizes the
image-tag matrix rank and priors as well as error sparsity.

In this paper, a novel framework for joint automatic multi-
label image annotation and image recommendation is pro-
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posed, extending the previous works [10, 11]. The starting
point is to extract feature vectors capturing the visual appear-
ance of each image. Next, an irregular third-order tensor (or
more precisely hypermatrix) is formed having three slices.
The first slice is the image-feature matrix. It contains typical
feature vectors, i.e., the GIST descriptors extracted from the
training images [12]. The second slice is the image-tag ma-
trix. Its columns are the multi-label vectors (i.e., tags) associ-
ated to the training images. The third slice is the image-user
matrix whose columns identify the user who has uploaded
the image or the users who are interested in it. Parallel Factor
Analysis 2 (PARAFAC 2) [13] is applied to the aforemen-
tioned irregular third-order tensor so that the semantic sim-
ilarities between the label sets associated to images (or the
common preferences between users) drive the extraction of
meaningful feature vectors of reduced dimensions referred to
as sketches hereafter. The reasoning behind this approach is
that PARAFAC2 represents the feature vector and the asso-
ciated label and user vectors as linear combinations of basis
vectors with coefficients taken from the same vector space.
The left singular vectors of the image-feature matrix span a
lower dimensional semantic space dominated by the label and
user information. Any feature vector extracted from a test im-
age is projected onto this semantic space first in order to ob-
tain a test sketch. Then, the tag annotation vector is obtained
by multiplying the test sketch by the left singular vectors of
the second slice. Similarly, the user recommendation vector
is obtained by multiplying the test sketch by the left singular
vectors of the third slice.

The performance of the proposed automatic image an-
notation and user recommendation framework is assessed
by conducting experiments on an image dataset of Greek
popular tourist landmarks retrieved from the social network
Flickr [14]. The dataset contains information for the user
who has uploaded each image and any tags each image is
annotated with. Furthermore, we are aware of the friendship
relations among the users. To efficiently recommend images
to users, we rely on this information assuming that users who
are declared as friends have common interests. Accordingly,
each user is interested in the images his or her friends have
uploaded. Promising results are reported when the afore-
mentioned framework is applied to the aforementioned image
dataset, using a 10-fold cross-validation experimental proto-
col.

The paper is organized as follows. In Section 2, basic
concepts from multilinear algebra and notations are listed.
The proposed joint multi-label image annotation and multi-
user image recommendation framework, which is based on
the PARAFAC2, is detailed in Section 3. Experimental results
are demonstrated in Section 4, and conclusions are drawn in
Section 5.

2. NOTATION AND MULTILINEAR ALGEBRA
BASICS

Tensors are considered as the multidimensional equivalent of
matrices (i.e., second-order tensors) and vectors (i.e., first-
order tensors) [15]. Throughout the paper, tensors are denoted
by boldface Euler script calligraphic letters (e.g. X), matrices
are denoted by uppercase boldface letters (e.g., U), vectors
are denoted by lowercase boldface letters (e.g., u), and scalars
are denoted by lowercase letters (e.g., u). ‖.‖F denotes the
Frobenius matrix norm, while B† denotes the Moore-Penrose
pseudoinverse of B. Let Z and R denote the set of integer and
real numbers, respectively. A third-order real-valued tensor
X is defined over the tensor space R

I1×I2×I3 , where In ∈ Z

and n = 1, 2, 3. Each element of X is addressed by 3 indices,
i.e., xi1i2i3 . Mode-n unfolding of tensor X yields the matrix
X(n) ∈ R

In×(I1...In−1In+1...I3). Hereafter, the operations on
tensors are expressed in matricized form [15].

3. JOINT MULTI-LABEL IMAGE ANNOTATION
AND MULTI-USER IMAGE RECOMMENDATION

Supervised subspace learning algorithms, such as Linear Dis-
criminant Analysis, assume that the data points annotated
with the same label lie close to each other in the feature
space, while data bearing different labels are far away. This
assumption does not hold in a multi-label framework, render-
ing subspace learning algorithms useless.

PARAFAC is a multi-way generalization of the singular
value decomposition (SVD) [16]. PARAFAC2 [13] is a vari-
ant of PARAFAC, which relaxes some of PARAFAC con-
straints. That is, while PARAFAC applies the same factors
across a set of matrices, PARAFAC2 applies the same fac-
tor along one mode. The aforementioned relaxation allows
the other factor matrices to vary, enabling the application of
PARAFAC2 to a collection of matrices having the same num-
ber of columns, but different number of rows [15]. Such a
collection forms the slices of an irregular third-order tensor.
Another important characteristic of PARAFAC2 is its ability
to overcome the weakness of conventional supervised sub-
space learning algorithms to handle multi-labelled data. Due
to these characteristics, PARAFAC2 has emerged as an ap-
pealing method for multi-label classification. It has been ap-
plied successfully to feature extraction and multi-label classi-
fication of documents [11] and music tagging [10]. Here, our
goal is not confined to the multi-label annotation of images
via PARAFAC2. We are interested to extend the potential
of PARAFAC2 to image recommendation by exploiting user
preferences on the top of image tags.

In order to jointly annotate images with multiple tags and
recommend images to multiple users, we train a PARAFAC2
model on an irregular third-order tensor X having three slices
(i.e., matrices). Let X(1) ∈ R

F×I
+ be the training image-

feature matrix, where F denotes the number of features and I



is the number of images. The image-tag matrix holds the tags
associated with each image and is denoted as X(2) ∈ R

V×I
+ ,

where V indicates the cardinality of the tag vocabulary. Its
ki element x(2)

ki = 1 if the ith image is labeled with the kth
tag in the vocabulary and 0 otherwise. The third matrix holds
the user-image relations, i.e., it identifies the users who are
interested in each image. Let us denote the third matrix as
X(3) ∈ R

U×I
+ , where U indicates the cardinality of the set of

users. Its li element x(3)
li = 1 if the lth user is associated with

the ith image and 0 otherwise.
Since X has three slices, the PARAFAC2 seeks a decom-

position of the form:

X(n) = U(n) HS(n) WT , n = 1, 2, 3 (1)

where U(n) ∈ R
In×k, n = 1, 2, 3 is an orthogonal matrix for

each slice, H ∈ R
k×k, S(n) ∈ R

k×k is a diagonal matrix of
weights for the nth slice of X, and W ∈ R

I×k is a coefficient
matrix. Clearly, I1 = F = the number of features, I2 = V =
vocabulary size, and I3 = R = number of users. The value of
k specifies the number of latent variables to be extracted from
each image.

The decomposition (1) can be obtained by solving the op-
timization problem:

argmin
U(n), H, S(n), W

3∑

n=1

‖X(n) −U(n) H S(n) WT ‖2F . (2)

The optimization problem of equation (2) can be effectively
solved with the algorithm described in [11]. Having solved
the optimization problem (2), one computes the matrix B �
U(1) HS(1) ∈ R

F×k
+ . B spans a feature space of reduced di-

mensions k, where the semantic relations between the feature
vectors and their associations with users are retained. Indeed,
the semantic relations between the label vectors as well as the
user vectors are propagated to the feature space through the
common right singular vectors.

As long as the reduced dimensions feature space spanned
by B is created, a test sketch is derived by pre-multiplying
the feature vector extracted from a test image x ∈ R

F×1
+ with

B†, i.e., x̃ = B† x ∈ R
k×1. To predict the tags of the test

image, one has to compute the tag vector a ∈ R
V ×1
+ by

a = U(2) HS(2) x̃. (3)

The tags associated with the largest values in a annotate the
test image. To recommend the test image to users who would
be interested in it, one should compute the recommendation
vector r ∈ R

R×1
+ given by

r = U(3) HS(3) x̃. (4)

The test image is recommended to the users who are associ-
ated with the largest values in r.

4. EXPERIMENTAL EVALUATION

4.1. Dataset

In order to assess the performance of the proposed framework
in joint image tagging and recommendation, we conducted
experiments on the dataset of images used in [14]. The dataset
has been retrieved from Flickr and consists of 1292 images of
Greek popular tourist landmarks. Each image in the dataset is
annotated with a set of tags, describing its semantic content.
The just mentioned annotation was performed manually by
the users who uploaded the image.

The vocabulary consists of a set of V = 2366 tags. The
images were uploaded by a set of R = 440 users. The vi-
sual appearance of images is captured by GIST descriptors
of size F = 512, as in [14]. In addition, friendship relations
among the users as well as participation of users to groups are
available. Table 1 summarizes the dimensions of the dataset
entities that are of interest in our study, e.g., the numbers of
images, features, tags, and users.

Table 1. Cardinalities of dataset entities.
Images 1264

Features 512
Tags 2366
Users 440

4.2. Dataset Preprocessing

Several preprocessing steps were needed in order to train ef-
fectively the PARAFAC2 model described in Section 3. The
first step was to exclude any images that were not annotated
at all, yielding finally I = 1264 images.

Since the images were manually annotated by the users of
the social network, the image-tag matrix was sparse. In order
to reduce the sparsity of the image-tag matrix, we applied the
Nearest Neighbour algorithm to the columns of the image-
feature matrix X(1) in order to find the 10 nearest neighbors
to the feature vector of each image in the training set. Ac-
cordingly, each image inherits the tags of its 10 nearest neigh-
bours.

The initial image-user matrix was also sparse, since each
image was uploaded by one user, as happens to any social
network. To obtain a more dense image-user matrix, we
exploited the friendship relations between the users. More
specifically, if a relation between an image and a user exists,
this relation is inherited by his or her friends. This inheri-
tance is justified on the grounds that friends share the same
interests, thus they upload similar images, and more likely
would like to see such images. The latter assumption is quite
important for effective image recommendation.



4.3. Evaluation protocol and metrics

In order to evaluate the proposed tagging method, the dataset
was randomly split into a training and test set at a ratio 60%
and 40%, respectively. During the experimental evaluation,
10-fold cross validation was employed. The length of the tag
vector returned by the system was 10, i.e., each test image
was automatically annotated with a set of 10 tags. The length
of the user vector returned by the system was 3, i.e., each test
image was recommended to 3 users. The number of returned
tags and users was chosen based on the characteristics of the
specific dataset.

The mean per word precision, the mean per word recall,
and the mean F1 measure, i.e., the averaged harmonic mean
of per word precision and recall were employed as metrics to
evaluate the proposed image tagging. Their definitions can
be found in [17, 18], but they are repeated briefly given next
for completeness. For each word/tag t in the vocabulary of
size V , let us denote by |tGT | the number of test images that
have been annotated with the word t by the users of the so-
cial network. Also, let us denote by |tM | the number of test
images that have been annotated with the word t by the pro-
posed method. If we denote by |tC | the number of images
that are correctly annotated with t, e.g., the images for which
the users’ annotation and the proposed method’s annotation
are identical, then the per word recall (RLC) is |tC |

|tGT | , while

the per word precision (PRC) is |tC |
|tM | . If the method never an-

notates an image with the word t, then the per word precision
is undetermined. In such a case, the per word precision can
be estimated by the appearance frequency of the word t in the
training images’ annotations. The F1 measure is defined as

F1 =
2 PRC RLC

PRC +RLC
. (5)

The F1 measure takes values between 0 and 1. The higher F1

measure values the more effective a tagging method is. In any
fold, the mean per word recall and precision are calculated
across all vocabulary words and (5) is computed. The mean
F1 measure is obtained by averaging the F1 measures across
the 10 folds. The former definitions can be easily adapted to
image recommendation.

4.4. Results

We applied PARAFAC2 with different numbers of latent vari-
able dimensions k. In Figure 1, the mean per word (user)
precision, the mean per word (user) recall, and the mean F1

measure for image tagging (user prediction) are plotted for
various values of k. PARAFAC2 is shown to be a computa-
tionally friendly method, since it allows for great dimension-
ality reduction without any deterioration of its efficiency.

Even though the range of precision and recall is [0, 1],
the aforementioned metrics may be upper-bounded by a value
less than 1, if the number of tags appearing in the ground truth
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Fig. 1. PARAFAC2 model prediction metrics for different di-
mensions of latent variables k on the dataset used in [14]: (a)
Mean per word precision, mean per word recall, and mean F1

measure for image tagging; (b) Mean per user precision, mean
per user recall, and mean F1 measure for user prediction.

annotation is either greater or less than the number of tags that
are returned by the automatic image annotation system. The
same applies to the predicted user vector. In Figure 2, the
mean values of evaluation metrics are presented for k = 20.
The performance of the PARAFAC2 model is compared to
that of two baseline models, the Random and the UpperBnd
model [19]. These models give a sense of the actual range for
each metric.

The Random model sets the lower limit of the values ad-
mitted by the metrics on a given dataset. It samples words
(without replacement) from a multinomial distribution param-
eterized by the word prior distribution, P (i), i = 1, 2, . . . , V
estimated using the observed word counts in the training set
[19]. Therefore, the tag selection according to the Random
model relies on the tag appearance frequency, such that the
most common tags are more likely to be chosen to annotate
an image. Apparently, the Random model for the user predic-
tion follows the same procedure.
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Fig. 2. Mean per tag (per user) metrics for the PARAFAC2
model (k=20) against the same metrics for the Random and
the UpperBnd models [19] measured on the database used in
[14].

On the other hand, the UpperBnd model sets the upper
limit admitted by each metric on a given dataset and indicates
the best possible performance [19]. The UpperBnd model
uses the ground truth tags of annotated images. As stated be-
fore, the model predicts a fixed number of tags. If the desired
number of predicted tags is smaller than the ground truth tags
of the image, a subset of the ground truth tags is randomly se-
lected. Similarly, if the ground truth annotation contains too
few tags, tags are randomly added to the annotation from the
rest of the vocabulary. The model is easily adapted to image
recommendation as well.

In Table 2, quantitative results of the PARAFAC2 perfor-
mance on automatic image tagging and recommendation are
summarized. The PARAFAC2 performance is compared with
that of the Random and UpperBnd models. The reported per-
formance metrics are means and standard errors inside paren-
theses. Standard error is evaluated by dividing the sample
standard deviation with the sample size. The performance
metrics were evaluated using 10-fold cross-validation for la-
tent variable dimension k = 20.

Table 2. Mean prediction results on the dataset used in [14].
Tag prediction

System Protocol Precision Recall F1 measure
PARAFAC2 10FCV, V =2366, U=440 0.668 (0.002) 0.213 (0.0008) 0.323 (0.001)
Random [19] 10FCV, V =2366, U=440 0.544 (0.0007) 0.171 (0.0002) 0.260 (0.0003)

UpperBnd [19] 10FCV, V =2366, U=440 1 (0) 0.312 (0.0003) 0.475 (0.0003)
User prediction

System Protocol Precision Recall F1 measure
PARAFAC2 10FCV, V =2366, U=440 0.058 (0.002) 0.08 (0.0008) 0.066 (0.0003)
Random [19] 10FCV, V =2366, U=440 0.038 (0.0006) 0.055 (0.0006) 0.045 (0.0006)

UpperBnd [19] 10FCV, V =2366, U=440 0.2 (0.001) 0.307 (0.002) 0.241 (0.0006)

By inspecting Table 2 and Figure 2, PARAFAC2 clearly
exhibits better performance than the Random model with re-
spect to the per-word (per-user) precision, per-word (per-user)
recall, and F1 measure using 10-fold cross-validation.

To test whether the evaluation metrics differences be-
tween the PARAFAC2 and the baseline models are statisti-
cally significant, we apply the approximate analysis in [20].
For the tag prediction, the per word recall and per word
precision differences between the PARAFAC2 and the Ran-
dom models as well as the PARAFAC2 and the UpperBnd
models are found to be significant at the 95% level of sig-
nificance. For the user prediction (image recommendation),
the per user recall and per user precision differences between
the PARAFAC2 and the UpperBnd models are found to be
significant at the 95% level of significance. Furthermore,
the per user recall differences between the PARAFAC2 and
the Random models are found to be significant at the 95%
level, while the per user precision differences are found to be
significant at the 90% level of significance.

Although for user prediction (i.e., image recommenda-
tion), PARAFAC2 almost doubles the values admitted by the
metrics when the Random model is applied, there is plenty
of room for improvement. The low values admitted by the
metrics are attributed to the dataset structure. As is previ-
ously said, each image was uploaded by only one user and
we artificially increased the image-users relations by exploit-
ing the friendship relations among the users. As a fact, in
the specific dataset, few users had a wide circle of friends,
while most users had declared only a few friendship connec-
tions. If we take into account the PARAFAC2 performance
on tag prediction, we are quite certain that had the friendship
relationships been more dense, higher absolute values would
have been achieved by the PARAFAC2 model.

To this end, it would be very interesting to examine the
performance of the proposed image annotation and recom-
mendation system on different dense datasets. Also, better
performance may be obtained by adding more matrices to the
PARAFAC2 model, which can capture, say the users’ pref-
erences. For example, one such matrix could be the matrix
associating each user with the images the user has marked as
favorites.

5. CONCLUSIONS

An appealing automatic image tagging and image recom-
mendation system has been proposed. PARAFAC2 has been
employed for semantically oriented feature extraction, multi-
label image annotation, and image recommendation to mul-
tiple users. The inclusion of three slices in the PARAFAC2
model enables capturing the latent relations between the im-
ages features, the tags, and the user interests. Promising
results have been reported.
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