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Abstract—Social media growing has resulted into a huge
amount of information. Meta-data, accompanying the raw data,
can assist data manipulation and processing, e.g.the tags assigned
to social images. Many systems for automatic image tagging are
based on pair-wise relations. Recent approaches focus on relations
among multiple vertices (i.e. items), which are respresented as
hyperedges in a hypergraph. In this work, an image tagging
methodology is proposed that exploits a factorization of a tensor,
capturing high-order relations among multiple Flickr images.
The proposed approach uses an extended graph, where the
vertices represent images as well as users. By analysing the data
communities and their similarities, image annotation is proposed.

I. INTRODUCTION

Automatic image tagging has received a lot of attention
over the last years because of the rapid development of social
media networks like Flickr!, Instagram?, Panoramio®. Image
annotation is of major importance in information retrieval tasks
and particularly for social media recommendation systems.
The most unambiguous way to tag an image is the manual
labeling. However, this is time consuming and costs too much.
So automatic tagging methods take place in order to achieve
fast and cheap data organization. Most of the social media
platforms offer to users the ability to add meta-data when
each image is uploaded, such as tags, geo-tags, groups, etc.
Many users do not tag their images or, when they do tag
them, they only use a small number of tags. If we take into
account the fact that there are many different kinds of tags, e.g.,
content-based tags, ownership tags, context-based tags etc., it is
easy to understand the difficulties of annotating social images.
Noisy tags, namely tags that consist of the same words, but
with completely different meaning or tags that are irrelevant
with the context or the content of an image, can lead to false
tag recommendations. Therefore, multiple information sources
should be established.

A. Image tagging

Previous work on image tagging focuses mostly on the im-
age content, i.e., identifying image features to create clusters,
that are next exploited to annotate the images. Researchers
are using Support Vector Machines (SVM) [1], or classify
the images by means of artificial neural networks (ANN)
[2]. Automatic image annotation using a multiple Bernoulli
relevance model using the joint probability distribution of
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the possible annotations and the image feature vectors is
proposed in [3]. Other approaches resort to nearest neighbors
[8], [9], structural group sparsity for feature selection or boost
annotation performance by exploiting the correlations among
multiple tags [10] and semantic distance functions [11], while
mining the image search results is used in [12] to accomplish
the annotation. More recently, scholars examine the optimal
combination of, namely a sparse kernel learning framework
for the continuous relevance model [14], while others propose
integration of Hessian regularization with discriminative sparse
coding for multiview problems [15]. Non-negative matrix
factorization for image annotation is used in [16]. Detailed
reviews about automatic annotation techniques can be found
in [4] and [5].

This work is focused on multiple meta-data connections,
such as the combined relations among users, friendships,
groups, tags, geo-tags, and image similarities. Existing meth-
ods that use information from multi-type interrelated objects
are described in [6], [7]. Such methods employ graph-based
methods. Multi-label image tagging is also addressed in [13]
within a sparse coding framework.

B. Tensor recommendation

Since the problem at hand has a multivariable nature, a
formulation of tag recommendation using tensor looks appeal-
ing. Indeed, tensors can be applied to tag recommendation
systems, because they can represent easily the connection of
more than two nodes of a graph. The present work targets on
recommending tags for images that are connected with users,
who have uploaded them to a social network. The connections
between the items, which form the graph, are multiple. For
example, users are connected to the uploaded image and also
to a corresponding tag, creating this way a triple edge, which
can be be represented by an element of 3rd-order tensor.

Recommendation systems using tensors have received a lot
of attention over the last years, because of the powerful prop-
erties of tensor decompositions. More specifically, a Higher
Order Singular Value Decomposition (HOSVD) is performed
in [17] and ranking scores for tag recommendation are obtained
through tensor unfoldings and SVD factorization. Personalized
tag recommendation is exploited in [18], handling missing
values and learning from pairwise ranking constraints.

II. TENSOR FACTORIZATION
A. Notation and preliminaries

A matrix can be defined as a tensor with two dimensions. A
vector is a tensor of dimension one. Multidimensional matrices



are called higher order tensors, e.g., a three dimensional matrix
is a third-order tensor. In this paper, the notation in [19] will be
used. Namely, scalars will be denoted by lowercase letters and
vectors by boldface lowercase letters. A vector element will
be denoted as a;. Matrices appear in boldface capital letters,
and their elements will be denoted as c;;. Tensors will be
denoted by boldface Euler script letters, e.g. for tensor X, its
elements will be x;;,. Next, some important term definitions
related to tensors have to be made. Tensor mode or way is the
tensor dimension. A tensor fiber is defined, when two of the
tensor indices are fixed. For example, for the first dimension,
one can obtain mode-1 fiber, which corresponds to a matrix
column. A slice is a matrix instance of the tensor. In other
words, when only one tensor index is fixed, one can obtain a
two dimensional representation, e.g., for fixed 37d dimension
the result is the frontal tensor slice X..;. Finally, the tensor
norm is defined similarly to the Frobenius matrix norm, i.e.,
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Matricization: The procedure of transforming a tensor to
matrix is called matricization or unfolding. There exist three
types of unfolding, one for each tensor mode. More specifi-
cally, the mode-1 matricization of tensor X € R’1*12Xs yjelds
the matrix X (1) € R"**%2/s In an analogous manner, mode-2
and mode-3 matricizations can be performed by concatenating
the transposed frontal slices and the tube (mode-3) fibers
respectively, resulting in the unfoldings X (o) € R2*/1%s and
X(3) c RisxIilz

B. Tensor Decompositions

As described in the Introduction, the most important benefit
of using tensors to model recommendation systems is the abil-
ity of tensor factorizations to create communities, clusters, and
ranked similarities. In an analogous way with the SVD decom-
position for matrices, tensor factorization can be described as
the procedure that provides basic matrices, which have specific
properties. Some of the decomposed matrices can group items.
Some others show the connections between terms and items.
Two major tensor decompositions are the Canonical Decompo-
sition/Paralel Factor Analysis (CP) CANDECOMP/PARAFAC
(CP) decomposition and the TUCKER decomposition. Each of
these decompositions, along with their different versions, has
advantages and disadvantages. A detailed description of their
applications can be found in [19]. Both methods of higher-
order factorization apply Alternating Least Squares (ALS) to
obtain an approximation of the input tensor. The fitting error
can vary, depending on the rank selection, the applied ALS
method, and other parameters (e.g., the selected regularization
method for the loss function evaluation).

1) CANDECOMP/PARAFAC: Tensor factorization decom-
poses a tensor X € R71*72%Is into a sum of rank-one tensors.
Each one of the rank-one tensors, is an outer product of
three vectors. It corresponds to a factor. If these vectors are
normalized to length one, the decomposition is [20]:
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where A\ € RF and r denotes the factor. Figure 1 demonstrates
graphically the tensor decomposition into rank-one factors.

2) TUCKER: Tucker decomposition differs from CP de-
composition, since the factorization provides a core tensor
multiplied by a matrix along each dimension and the factor
matrices have different dimensions. In this case, the approxi-
mation of the input tensor will be:
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where A € RIXP B ¢ RExQ € e RIBXE gpd
G € RPX@XE G g the core tensor and determines the
connections between the decomposed matrices. An illustration
of the Tucker factorization is shown in Figure 2.

3) Nonnegative decomposition (NTF): It is an extension of
nonnegative matrix factorization (NMF) to tensors. Nonneg-
ativity is a constraint that can be useful to the factorization
procedure, because the input data are positive numbers. When
the resulting factorized matrices have no negative elements,
it is easier to inspect them and analyse the scores they
provide. A major difficulty NTF has is that it suffers from
slow convergence speed due to the nonnegativity constrains,
especially for large-scale problems. In [21], a fast low rank
approximation is introduced and, additionally, bipolar noise is
suppressed.

III. MULTIVARIABLE DATA REPRESENTATION

The problem at hand consists of images downloaded from
Flickr, which come with metadata. Motivated by [20], the
present work uses the term similarities provided by the various
decompositions and creates ranked relations between the tag
terms in order to provide similar tags for images. The goal
of this paper is to create a centroid (i.e., a codevector)
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that is representative of each tag for a specific image. The
technique is based on [20]. However, here the basic nodes of
the graph describing the system are the images together with
the users who have uploaded them. Since the feature vectors,
provided by the factorized matrices, correspond to the factors,
it is logical to assume that these factors represent the data
communities.

A. Dataset

The provided dataset was retrieved form Flickr. It consists
of Ny, = 1292 images, N,, = 440 users, N;; = 2366
tags, Ngeo = 125 geotags, and N, = 1644 user groups.
Different kinds of pairwise relations of the dataset vertices are
defined, namely, connections between users (user friendships),
between images (image similarity), between users and user
groups and between images and geotags. In this dataset,
connections between three different items are described. A user
who uploaded an image and gave it a corresponding tag or
geotag, creating hyperedges. Accordingly, the use of 3-order
tensor for this hyperedge representation becomes necessary.

B. Tensor representation of the data

As mentioned in previous sections, the nodes of the hy-
oergraph that is represented by the tensor will be users and
images. Since the retrieved dataset consists of 440 users and
1392 images the representative tensor will have a NV x K size
where N = Nys + N;,,, = 1732 and K is the number of the
tensor slices, (i.e., 6).

For the first slice X..;, the only relations captured are the
users’ friendships. The nonzero elements of this slice come
from the user-user relation adjacency matrix, which has binary
elements; one if a connection between users is established, zero
otherwise.

The second slice X..o represents the relations that users
have, concerning the groups which they belong to. Since all
slices must have same dimension, it is not possible to use the
user-group adjacency matrix. Therefore, if U € RNus*Nor s
the user-group matrix, then the square matrix providing the
corresponding relations, will be:

W, =UU" 4)

where W, € RNusXNus The second slice consists of matrix
W, and the remaining elements are set to zero.

The third slice X..3 represents the user-image connection.
These relations are derived from the user-image matrix T €
RNwsXNim  One can obtain the matrices:

Wy =TTT and W; =T7T, (5)

where Wy € RNusXNus and W; € RNimXNim  Then,
matrices Wy and W7 constitute the third slice, as shown in
Table 1.

image similarity slice
users

tag slice

geotag slice

user-image slice

user-group slice

images
9 friendship slice

Fig. 3. Tensor representation

In a similar manner, the fourth slice is created. The
particular slice provides the relations between users-images-
geotags. From the initial matrices U, € RNus*Naco and
I, c RNim*Ngeo which describe the user-geotag connections
and image-geotag connections respectively, matrices Wy €
RNusXNus and Wy € RNim*Nim are obtained via:

Wy =U,U," and Wy = I,1,7, (©6)
Matrices Wy and Wi build the fourth slice X..,4.

For the tag relation slice, namely the fifth slice X..s,
a similar method is applied. Hence, considering matrices
containing the relations of user-tag U; € RMvs>*Nts and of
image-tag I, € RYVim>*Nis the user-tag-image slice is created,
after the calculation of the corresponding square matrices has
taken place i.e.,

Wyr = UU,T and Wi = L7, (7
where Wy € RNusXNus and Wi € RNim X Nim |

Finally, the sixth slice, that represents the image similarity
is created from the image-image similarity matrix. The image
similarity matrix S; € RNim>*Nim contains the top five most
similar images for each image. The 100 nearest neighbors to
each image were identified using the GIST descriptors [22] and
they were reduced to the 5 most similar images to the reference
image, by using scaleinvariant feature transform (SIFT) [23].
More specifically, S has elements:

Si(i,j) = {

In order to obtain a symmetric image similarity matrix, the
sum (S; + ST)/2 is calculated. In Figure 3, the complete
tensor of the data is depicted. For more information about the
dataset, refer to [27].

1 if image j belongs to top 5 similar to image ¢
0 otherwise

IV. EXPERIMENTS AND EVALUATION

Tensor X is of dimension N x N x 6 and it is very sparse.
The tensor decomposition techniques described in Section II
are performed and the resulting factor matrices have been
derived. Several toolboxes were used, namely the Tensor
Toolbox [25], the TensorLab [26], and TADLAB [24]. Firstly,
the dataset is divided into training and test sets. Considering the
data representing tensor, and taking into account the fact that
the problem tackled is tag recommendation, the training set is



formed by retaining 75% of the tags of each image to zero.
Latent representations for each user and each image that are
spanned by matrices A and B from Equations 2 and 3, provide
user to user similarity as well as image to image similarity
[20]. In addition, these feature vectors are used to analyze a
body of work via centroids. Following this methodology, one
can use the centroids to describe the communities of items,
calculate similarity scores and, as a consequence, recommend
tags, geotags, images etc., as is detailed next.

A. CANDECOMP/PARAFAC

More specifically centroids can be retrieved from matrices
A and B by computing the mean values of their columns. In
this application, R = 30 is used, providing factorized matrices
of dimension N x 30. Let us suppose that one is interested
to create a centroid vector g € R*30 representative of one
particular tag. All training images are identified, which bear
the tag under study. For the rows of the factor matrix A which
are associated to these images, we average across the columns
of the factor matrix. If this procedure is repeated for matrix
B as well, the similarity scores can be computed using tags
as parameter as

Bg (tag). ®)

DO =

1
s(tag) = 5 Ag ,(tag) +

For all tags, corresponding centroids are provided and, by
using cosine distances, a cosine similarity matrix between
tags can be computed. Next, for queering images, the centroid
scores for the training tags related to them are obtained and an
updated tag centroid value, for the query image, is computed.
Finally, a ranked vector of the most similar tags for the image
at hand is provided and is compared to the ground truth. Hence,
precision and recall measures can evaluate the performance of
the method.

B. Tucker

Although Tucker factorization properties vary from those
of CP decomposition, the same technique can be applied in
order to get tagging recommendations. In this case, the selected
value for the core tensor dimension was R x R x R with
R = 6. Now, in an analogous manner as with CP, one can use
the Tucker decomposed matrices to create the communities
and to receive the semantic feature spaces. Centroids can be
obtained from the mean values of matrices A and B provided
by Equation 3, exactly as with CP decomposition, however the
vector dimension will be of size 6, because of the core tensor
selection.

C. NTF

As claimed in previous sections, nonnegativity can be very
helpful when analysing the component matrices. The input
tensor that describes the hypergraph has nonnegative values.
In fact all elements have either zero value or value one. Hence,
NTF is also applicable and the results are compared to other
techniques.
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Fig. 4. Precision-recall curves for Tucker, CP, and NTF

D. Comparisons

From the comparisons between the different approaches of
tensor factorization, it is easy to notice the advantages and
the disadvantages of each method. Tucker approach outper-
forms the CP decomposition, because, the factorized matrices
in CP are not orthogonal and this property appears to be
essential in the specific problem. Concerning the nonnegative
decomposition, it is seen that the expectation of getting more
accurate recommendations by enforcing nonnegativity in the
factorization is not fulfilled. The resulting precision - recall
curves for all tensor decompositions are depicted in Figure 4.

V. CONCLUSION

The proposed methodology to image tagging applies
ranked similarity cosine distances from representative centroid
tags. It has been demonstrated that it is possible to represent by
hypergraph vertices of different kind, i.e., users together with
images, in order to obtain a low rank feature space associated
to latent semantic communities. In addition, the similarities
provided by centroid analysis of the factorized matrices are
used to create tag scores and consequently are exploited for
tag recommendation.
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