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Abstract In this paper, we propose a novel method which adopts evolutionary

techniques so as to optimize a graph structure. The method that was developed has

been applied in clustering problems, where spectral graph clustering technique has

been used. In order to use evolutionary algorithms initial population has been cre-

ated consisting of nearest neighbor graphs and variations of these graphs, which

have been properly altered in order to form chromosomes. Since it was observed

that initial population is crucial for the performance of the algorithm, several tech-

niques have been considered for the creation. A fitness function was used in order to

decide about the appropriateness of the chromosomes. The major advantage of our

approach is that the algorithm is generic and can be used to all problems that are,

or can be, modeled as graphs, such as dimensionality reduction and classification.

Experiments have been conducted on a traditional dance dataset and other multidi-

mensional datasets, providing encouraging results.
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1 Introduction

The aim of clustering is to discover the natural grouping of a dataset, such that sim-

ilar samples are placed in the same group, while dissimilar samples are placed into

different ones. Clustering has been used in order to solve a diversity of problems,

including bioinformatics, data mining, image analysis, information retrieval etc. A

detailed survey on clustering applications can be found in [1] and a more recent study

in [2].
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Spectral graph clustering is widely used and have received a lot of attention nowa-

days, as it can be applied to a wide variety of practical problems, such as computer

vision and speech analysis. Spectral graph clustering [3] refers to a class of graph

techniques, that rely on eigenanalysis of the Laplacian matrix of a similarity graph,

aiming to divide graph nodes in disjoint clusters. In all clustering techniques, and

thus also in spectral clustering, nodes that originate from the same cluster should

have high similarity values, whereas nodes from different clusters should have low

similarity values. In [4] the authors summarize some of the applications of spectral

graph clustering.

So far, some evolutionary-based approaches to the problem of clustering have

been proposed throughout the years. In [5] the authors proposed a genetic algorithm

in order to search for the cluster centers by minimizing a clustering metric, while in

[6] authors aim to find the optimal partition of the data, using a genetic algorithm,

without searching all possible partitions. A more detailed survey of evolutionary

algorithms for clustering is presented in [7].

In the proposed approach, similarity graphs are evolved, which have been trans-

formed properly in order to play the role of the chromosomes in the employed genetic

algorithm [8]. In order to use evolutionary algorithms we construct the initial pop-

ulation with the aid of k-nearest neighbor graphs which, then, are transformed to

one-dimensional binary strings and undergo genetic operators.

The remainder of this paper is organized as follows. In Sect. 2, the problem that

we attempt to solve is stated and some general aspects that concern the algorithm

are discussed, including similarity graph construction, and spectral clustering issues.

Section 3, presents the proposed evolutionary algorithm in detail. In Sect. 4, exper-

imental results of the algorithm are described. Finally, in Sect. 5, conclusions are

drawn and future work is discussed.

2 Problem Statement

Clustering is the process of partitioning a usually large dataset into groups, according

to a similarity (or dissimilarity) measure. The goal is to place samples that have a

small distance from each another, to the same cluster, whereas samples that are at a

large distance from each another are placed to different clusters. Clustering is usually

not a trivial task, as the only information we have about the data, is the data itself. In

order to obtain some information about the structure of the data, we usually construct

similarity matrices.

2.1 Similarity Functions and Similarity Graphs

Similarities of data samples can be represented as a similarity graph G = (V ,E),
where V , E represent vertices (or nodes) and edges of the graph, respectively. If
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we assume that each vertex vi represents a data sample, then two nodes vi, vj are

connected if the similarity si,j between them is positive or larger than a threshold,

and the edge is weighted by si,j. The problem of clustering may now be reformulated

as finding a partition of the graph such that the weights within a cluster have high

values, whereas weights between different clusters have low values.

Before constructing a similarity graph, we need to define a similarity function on

the data. The most common similarity function 𝐒 is the Gaussian similarity function

(heat kernel). Heat kernel between two graph nodes is defined as:

𝐒 = 𝐡𝐢,𝐣 = 𝐞𝐱𝐩
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where 𝜎 is a parameter that defines the width of the neighborhood.

Generally, the most common choice of similarity graphs are k-nearest neighbor

graphs (to be called k-nn graphs) because of their simplicity as well as their sparsity.

The aim of a k-nn graph 𝐀 is to connect node vi with node vj if vj is among the k
nearest neighbors of vi. This results in a directed graph which is easily transformed to

an undirected by simply ignoring the directions of the edges. In the proposed method,

an undirected graph was used, in order to construct the similarity graph.

However, it is well known that spectral clustering is very sensitive to the choice of

the similarity graph that is used for constructing the Laplacian [9]. Indeed, selecting

a fixed k parameter for the k-nn graph is very difficult and different values lead to

dramatically different clusterings. Optimizing the clustering over the graph structure

is not a trivial task, since the clustering criteria are not differentiable with respect to

the graph structure. Thus, we propose in this paper to use evolutionary algorithms in

order to optimize specific clustering criteria, that are considered as fitness functions,

with respect to the underlying graph, which is transformed to a chromosome solution.

2.2 Spectral Graph Clustering

Spectral graph clustering [3], refers to a class of graph techniques, which rely on the

eigenanalysis of a matrix, in order to partition graph nodes in disjoint clusters and is

commonly used in many clustering applications [4].

Let 𝐃 be a diagonal N × N matrix having the sum dii =
∑

j Wi,j on its main diag-

onal. Then, the generalized eigenvalue problem is defined as:

(𝐃 −𝐖)𝐯 = 𝜆𝐃𝐯, (2)

where 𝐖 is the adjacency matrix, and 𝐯, 𝜆 are the eigenvectors and eigenvalues

respectively.
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Fig. 1 The 𝐒 matrix represents the full similarity matrix constructed using (1). The 𝐀 matrix

represents a k-nn graph, which has undergone genetic operators. The ⊙ operator performs element-

wise multiplication, resulting in a sparse matrix 𝐖, which only contains elements in places where

𝐀 matrix contains elements

Although many variations of graph Laplacians exist [9], we focus on the normal-

ized graph Laplacian 𝐋 [10] defined as:

𝐋 = 𝐈 − 𝐃−1∕2𝐖𝐃−1∕2
(3)

where 𝐖 is the adjacency matrix, with wi,j = wj,i ≥ 0, 𝐃 is the degree matrix and 𝐈
is the identity matrix. The smallest eigenvalue of 𝐋 is 0, which corresponds to the

eigenvector 𝐃−1∕2𝟏. The 𝐋 matrix is always positive semi-definite and has n non-

negative real-valued eigenvalues 𝜆1 ≤ ⋯ ≤ 𝜆n. The computational cost of spectral

clustering algorithms is quite low when matrices are sparse. Luckily, we make use

of k-nn graphs which are in fact sparse.

In the proposed method, we perform eigenanalysis on 𝐋 matrix, where 𝐖 is

defined as:

𝐖 = 𝐒⊙ 𝐀, (4)

𝐒 represents the full similarity matrix obtained using (1) and 𝐀 represents an undi-

rected k-nn matrix, which is a sparse matrix. The ⊙ operator performs element-wise

multiplication. This process results in a sparse matrix 𝐖, only containing elements

in places where 𝐀 matrix contains elements. An example of the ⊙ operator is illus-

trated in Fig. 1. Eigenvalues are always ordered increasingly, respecting multiplici-

ties, and the first k eigenvectors correspond to the k smallest eigenvalues. Once the

eigenanalysis has been performed and the new representation of the data has been

obtained, the k-means algorithm is used in order to attach a cluster to every data

sample.

3 The Proposed Algorithm

In order to partition a dataset into clusters, spectral graph clustering has been applied

on evolving k-nn similarity graphs. In more detail, we evolve a number of k-nn simi-

larity graphs with the aid of a genetic algorithm, in order to optimize the structure of

the graph, by optimizing a clustering criterion. In this paper, clustering criteria were
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employed as fitness functions. Moreover, k-nn similarity graphs are transformed

properly into chromosome solutions, in order to be used in the genetic algorithm.

Let J be a clustering criterion that depends on the similarity graph 𝐖. However,

the optimization problem is not convex and moreover the fitness function is not dif-

ferentiable with respect to𝐖. Since 𝐒 is considered constant after selecting a specific

similarity function and through the definition of 𝐖 in (4), the optimization problem

is defined as:

optimize
𝐀

J(𝐀), (5)

where 𝐀i,j ∈ 0, 1 is a k-nn graph.

3.1 Construction of Initial Population

In our algorithm, we use the sparse matrices that originate from k-nn graphs, result-

ing in an initial population that consists of matrices with binary elements. In this

method, a Gaussian function has been employed as a similarity measure, in order

to obtain the similarity matrix 𝐒, which is calculated pairwise for all the data in a

database of our choice, using (1). Our experiments showed that the value of 𝜎 has a

decisive role to the performance of the algorithm, thus, several, arbitrary rules exist;

in the proposed method, we have used multiples of the data diameter.

First, we calculate k-nearest neighbor matrices 𝐀, with k = 3,… , 8, which consti-

tute the backbone of the initial population. Next step is to enrich the population with

nearly k-nearest neighbor matrices. In order to achieve that, we alter the k-nearest

neighbor matrices that have already been calculated, by converting a small propor-

tion of 0’s, from 𝐀 matrices, to 1’s and vice versa. This process guarantees that the

proportion of 1’s and 0’s will remain the same in the new matrix. It is important not

to alter the k-nn graphs completely, so as to keep all the good properties. Finally, a

small proportion of completely random matrices are added, in order to increase the

population diversity, in which the number of 1’s are equal to the number of 1’s that

a 5-nn graph would have.

From the various experiments conducted, we have concluded that the selection

of the parameter k of the nearest neighbor graphs is crucial to the clustering results,

as illustrated in Fig. 2. Figure 2a presents a dataset that consists of two classes with

each one having a different color. Figure 2b, c represent the clustering results when

a 3 and a 5-nearest neighbor graph were used, respectively.

Before proceeding to the algorithm, we must define the way that the k-nn matrices,

and variants of these matrices, in the initial population are transformed into chromo-

somes, thus, we need to define how a square matrix becomes a one-dimensional vec-

tor. As the k-nn graphs 𝐀 are constructed in such a way to be symmetrical, we may

only keep the elements of the upper triangular matrix, with no loss of information.

Then, the remaining elements are accessed in rows, forming the one-dimensional

vector (Fig. 3).
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Fig. 2 The effect of k-nearest neighbor graphs in clustering. In Fig. 2a the two classes of the dataset

are presented. Figure 2b, c represent the clustering results when a 3 and a 5-nearest neighbor graph

were used, respectively. Notice the difference in clustering results especially when the data are close

to both classes

Fig. 3 The way a k-nn graph 𝐀 is transformed into a, one-dimensional vector, chromosome. We

only keep the elements of the upper diagonal, as the matrix is constructed to be symmetric, resulting

in a matrix like the one in the middle. Then, this matrix is accessed horizontally, in order to obtain

the desirable result, the chromosome

3.2 Optimization of the Solutions

The novelty of the proposed algorithm is based on the way that we select to optimize

the solutions of the problem, by optimizing a clustering criterion J, as previously

defined in (5). Clustering criteria are divided into two main categories, internal and

external criteria. The calculation of internal criteria implies that we have no prior

knowledge about the data and we can only depend on quantities and features inherent
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to the dataset, whereas calculation of external criteria implies that we have some

knowledge about the dataset in advance (i.e. ground truth).

In the recent literature, many different clustering criteria [11] have been pro-

posed. Some of the most common internal criteria are Calinski-Harabasz index [12],

Davies-Bouldin index [13] and Dunn’s index [14], whereas some external criteria are

purity [15], F-measure [16], a measure based on Hungarian algorithm [17] and nor-

malized mutual information [18]. Some of the aforementioned internal criteria have

been used both for optimization and evaluating the performance of the algorithm,

whereas the external criteria only for evaluation.

As the value of such criteria cannot be optimized, without the use of derivatives,

we have employed evolutionary techniques in order to solve this problem. The opti-

mization is performed by altering the chromosomes or, else, by altering the k-nn

similarity matrices 𝐀 as in (2).

3.3 The Genetic Cycle

Evolutionary algorithms solve problems based on operators inspired from biology.

The first step of the genetic algorithm is to select the chromosomes which will

undergo the crossover operator. For this purpose, a roulette wheel method has been

employed [19], where a probability is associated with each chromosome, based on

the value of the fitness function: the higher the value, the higher the probability to

be selected. The probability pi of the ith chromosome to be selected, if fi is its fitness

value is defined as:

pi =
fi

ΣN
j=1fj

. (6)

Next, we combine the selected chromosomes, based on the crossover rate which

was set to 0.7, in order to produce new ones. In the proposed algorithm, a single

crossover point is randomly selected for every set of chromosomes and the sub-

sequences that are formed are exchanged respectively. Then, we randomly choose

a small proportion of the chromosomes, based on the mutation rate which was set

to 0.4, to undergo mutation, that is the random change of some elements of a chro-

mosome. In order to guarantee that the newly produced chromosomes will not have

been altered too much we perform mutation by converting 1% of 0’s to 1’s and vice

versa.

After the application of genetic operations to the chromosomes, the new gener-

ation has been formed. In order to perform spectral clustering (Sect. 2.2), we need

to reconstruct the k-nearest neighbor matrix 𝐀, which will consist of binary digits,

from the one-dimensional vector chromosome. Then we apply the similarity matrix

𝐒 on 𝐀 using the ⊙ operator, in order to obtain the 𝐖 as illustrated in Fig. 1. Spectral

clustering [10] may now be performed on 𝐋 as in (3).
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The next step is to calculate the fitness values of all the newly produced chro-

mosomes, and place them along with the parent-chromosomes. Then, elitism is per-

formed: we sort all chromosomes, with the fittest being on the top, and we keep only

those chromosomes with the highest fitness value, so as the number of the chromo-

somes kept to remain unchanged after every generation.

The proposed algorithm terminates when a maximum of 50 generations has been

reached, or when the optimized criterion has not been altered for 5 consecutive gen-

erations.

4 Experiments

In order to evaluate the proposed algorithm, we have conducted several experiments

using 3 different datasets and exploiting several input parameters. The characteristics

of the datasets used, are described in Table 1.

Datasets “Movie 1” and “Movie 2” consist mainly of facial images originate from

movies, detected using a face detector. In the experiments the images were scaled, in

order to have the same size, considering all the detected facial images of the movie

clip and using a mean bounding box, from all bounding boxes that the face detec-

tor provided. A problem that might arise is that of anisotropic scaling: the images

returned by the detector might have different height and width, which is problematic

when scaling towards a mean bounding box, thus we calculate the bigger dimension

of the bounding box and then we take the square box that equals this dimension cen-

tered to the original bounding box center. Lastly, the initial “Folk dances” dataset

consists of videos of 5 different traditional dances: Lotzia, Capetan Loukas, Ramna,

Stankena and Zablitsena with 180, 220, 220, 201 and 192 videos respectively, from

which histograms were extracted according to [20]. An example of the dataset is

illustrated in Fig. 4.

The size of the populations remained unchanged for all the experiments conducted

and was set to 200 chromosomes. Every experiment was executed 3 times, so the

results presented here are the average of these runs. We should highlight here that,

in every experiment, only one clustering criterion c is being optimized. The values

of the rest of the criteria are also calculated during every experiment only for eval-

uation reasons. In other words, the values of the rest of the criteria are not their best

Table 1 Datasets used

Dataset Duration Classes Size of # of

dataset features

Movie 1 02 ∶ 06 ∶ 21 21 1, 222 152× 152

Movie 2 01 ∶ 44 ∶ 31 41 1, 435 150× 150

Folk dances – 5 1012 1000
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Fig. 4 An example of Ramna dance, from the “Folk dances” dataset

values as if they were being optimized themselves. Instead, their values depend on

the clustering obtained by optimizing the criterion c. Moreover, the optimization of

a single criterion does not necessarily mean that the rest of the criteria will also be

improved, especially when the way in which the criteria are calculated differs a lot.

In tables presented here, we have attempted to summarize some of the results

of the datasets. The results of the proposed method are represented under the label

“best”, while “5nn” represent the results of the clustering if the 5-nn graph would

have been employed to the data. For Tables 2, 3 and 4 the criterion being optimized

is highlighted. The 𝜎 parameter is the heat kernel parameter as in (1) and C is the

Table 2 Folk dances dataset. Optimizing Calinski-Harabasz criterion

𝜎 C Calinski-Harabasz Davies-Bouldin NMI Purity

Best 5nn Best 5nn Best 5nn Best 5nn

0.45 5 77.803 40.665 2.116 3.317 0.32 0.255 0.468 0.434

0.9 5 71.026 38.309 2.745 3.252 0.281 0.271 0.441 0.434

1.8 5 74.923 43.649 2.292 3.013 0.312 0.291 0.469 0.463

Table 3 Movie 1. Optimizing Calinski-Harabasz criterion

𝜎 C Calinski-Harabasz Davies-Bouldin Hungarian Purity

Best 5nn Best 5nn Best 5nn Best 5nn

5000 21 161.239 121.659 1.165 1.162 20.922 20.758 0.468 0.475
15000 21 161.011 123.922 1.208 1.103 21.495 21.167 0.462 0.477
20000 21 149.195 121.413 1.169 1.072 21.113 20.404 0.459 0.475
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Table 4 Movie 2. Optimizing Calinski-Harabasz criterion

𝜎 C Calinski-Harabasz Davies-Bouldin Hungarian Purity

Best 5nn Best 5nn Best 5nn Best 5nn

25 40 81.917 70.737 1.240 1.204 15.889 15.447 0.400 0.398

50 41 76.269 69.302 1.144 1.257 16.353 15.819 0.410 0.408

75 41 78.449 66.245 1.226 1.200 16.121 15.981 0.401 0.402
150 40 82.090 66.393 1.183 1.248 16.167 15.772 0.403 0.391

number of clusters. We observe that in almost all cases the external criteria agrees

with the internal optimized criterion that the clustering that was performed did actu-

ally grouped the data better than if the 5-nn graph would have been employed. In

most cases, the other internal criterion also agrees to this conclusion.

5 Conclusion

We have presented a novel algorithm that makes use of evolutionary algorithms in

order to achieve good clustering results, with the aid of nearest neighbor graphs. It

is important to remark that the algorithm is general and can be used to manipulate a

wide variety of different problems, such as clustering and dimensionality reduction.

The technique of using nearest neighbor graphs as initial population appears to yield

satisfactory results, in terms of both internal and external criteria.

In the future, we aim to improve the proposed evolutionary algorithm, by opti-

mizing even different criteria, or even use multiple of them in order to decide which

chromosome is best. We shall also focus our efforts on creating an even better ini-

tial population, for example by including more than only random variations of the

nearest neighbor graphs.
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