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Abstract—We are interested in Greek folk music genre clas-
sification by resorting to canonical correlation analysis (CCA).
Here, the genre is related to the place of origin of the song. The
CCA learns a linear transformation of the song lyrics descriptors
that is highly correlated with their genre labels as well as another
linear transformation of the audio features extracted from music
recordings, which is maximally correlated with their genre labels.
In the latter task, thanks to the deep CCA (DCCA), deep
nonlinear transformations of the audio features are learnt, which
are maximally correlated with the genre labels. Experimental
findings are disclosed for a two-class genre recognition problem,
employing folk songs originated from Pontus and Asia Minor.
It is demonstrated that the CCA achieves an average accuracy
of 97.02% across the 5 folds, when the term frequency-inverse
document frequency features model the song lyrics. By modeling
the music signal of each song with 28 mel-frequency cepstral
coefficients (MFCCs) extracted from each frame and averaged
over all frames, the average accuracy of the CCA drops to 72.9%
across the 5 folds. The DCCA yields an accuracy of 69% for
audio-based genre recognition.

Keywords—Canonical Correlation Analysis; Least-Squares Re-
gression; Deep Canonical Correlation Analysis, Greek FolkMusic
Classification.

I. I NTRODUCTION

Music Information Retrieval (MIR) has been developed
mainly for Western popular and classical music. However,
the interest for non-Western music continuously grows as is
evidenced by the increasing number of papers in recent MIR
conferences. Computational methods for automatic classifica-
tion and topological clustering of large folk music databases
are described in [1]. A platform that extracts and explores pitch
annotations in non-Western music, providing musicologically
meaningful representations can be found in [2].

Greek folk music extends far back in time. It consists of
compositions, usually characterized by the place of origin,
where the songs are performed or created, such as Pontus,
Asia Minor, Macedonia, Epirus, Thrace, Aegean islands, etc.
Apart from regional criteria, Greek folk songs are classified
into akritic, historical, klephtic, ballads, religious, love, wed-
ding, satiric, immigrant, lament, work, proverbial, lullabies,
and baby dandling ones [3]. They cover the whole spectrum
of social life, including human life milestones, the nation’s
history, or community celebrations.

In this paper, we are interested in Greek folk music genre
classification by resorting to canonical correlation analysis
(CCA). Here, the genre is related to the place of origin of
the song. The CCA finds the maximal correlations between

two sets of random vectors [4]. Such random vectors may
capture two “different views” of the same underlying pattern.
One popular use of the CCA is in supervised learning. That
is, when one view is derived from the data and the other
view is derived from the class labels [5]–[7]. In particular,
the CCA is exploited to learn a linear transformation of the
song lyrics descriptors that is maximally correlated with the
song genre labels as well another linear transformation of the
audio features extracted from each song recording, which is
also highly correlated with the genre labels. In the latter task,
deep nonlinear transformations of the audio features maximally
correlated with the genre labels are also learnt by means of the
so-called deep CCA (DCCA) [8].

The major contribution of the paper is in the experimental
findings reported for a two-class genre recognition problem,
which employs folk songs originated from Pontus and Asia
Minor. It is demonstrated that the CCA achieves an average ac-
curacy of 97.02% across the 5 folds, when the term frequency-
inverse document frequency (tf-idf) weights model the song
lyrics. However, audio-based genre classification turned out to
be a tough problem for the two-class problem under study. By
modeling the music signal of each song with 28 mel-frequency
cepstral coefficients (MFCCs) extracted from each frame and
averaged next over all frames, the average accuracy of the
CCA drops to 72.9% across the 5 folds. For audio-based genre
classification using MFCCs, the DCCA yields an accuracy of
69%. In this task, the difference between the accuracy of the
CCA and that of the DCCA is not statistically significant at
95% level of confidence. However, in certain folds of the cross-
validation setting, the difference between the accuraciesof the
CCA and the DCCA is found to be statistically significant.

The outline of the paper is as follows. Section II describes
the CCA and the DCCA. The dataset used in the experiments
and the extracted features are discussed in Section III. The
experiments conducted are detailed in Section IV and conclu-
sions are drawn in Section V.

II. CLASSIFIERS BASED ONCANONICAL CORRELATION

Throughout the paper, scalars appear as lowercase letters
(e.g.,λx), vectors are denoted by lowercase boldface letters
(e.g., x), and matrices are indicated by uppercase boldface
letters (e.g.,X). I stands for the identity matrix of compatible
dimensions,1 is the vector of ones of compatible dimensions,
⊤ denotes vector/matrix transposition, and‖x‖2 denotes theℓ2
norm of vectorx. Lowercase italic boldface letters are reserved
for random vectors (e.g,x). R andZ denote the fields of real,
and integer numbers, respectively.



A. Canonical Correlation Analysis

CCA has been applied successfully in various applications
[9], including natural language processing [10], [11], speech
processing [12], [13], and multimodal signal processing [14].
It uses two views of a set of patterns and projects them
onto a lower-dimensional space in which they are maximally
correlated. CCA has also been used for supervised learning,
where one view is derived from the data and the other view is
derived from the class labels [5]–[7]. In this setting, the data
are projected onto a lower-dimensional space dictated by the
label information.

Formally, let x ∈ R
d×1 and y ∈ R

k×1 be two random
vectors with covariance matricesΣx ∈ R

d×d andΣy ∈ R
k×k,

respectively. LetΣxy ∈ R
d×k denote the cross-covariance

matrix of the aforementioned random vectors. CCA computes
two projection vectorswx ∈ R

d×1 andwy ∈ R
k×1, such that

the correlation coefficient

ρ =
w⊤

x Σxy wy
√

w⊤
x Σx wx

√

w⊤
y Σy wy

(1)

is maximized. LetX =
[

x1|x2| . . . |xn

]

∈ R
d×n be the data

matrix andY =
[

y1|y2| . . . |yn

]

∈ R
k×n be the label matrix.

Assume that bothxi and yi are centered. If the covariance
matrices in (1) are replaced by sample dispersion matrices,
the following optimization problem should be solved:

(w∗
x,w

∗
y) = argmax

wx, wy

w⊤
x XY⊤wy

√

w⊤
x XX⊤ wx

√

w⊤
y YY⊤ wy

(2)
The objective function in (2) is the sample correlation co-
efficient, which is invariant to the scaling ofwx and wy.
Accordingly, the CCA optimization problem can be expressed
as a constrained optimization problem, i.e.,

argmax
wx, wy

w⊤
x XY⊤wy

subject to w⊤
x XX⊤ wx = 1,

w⊤
y YY⊤ wy = 1.

(3)

If YY⊤ is non-singular,w∗
x can be found by solving

max
wx

w⊤
x XY⊤

(

YY⊤
)−1

YX⊤ wx

subject to w⊤
x XX⊤ wx = 1.

(4)

The just mentioned assumption forYY⊤ can be easily main-
tained in practice. Simply, start with a class membership
indicator matrix (i.e., append for each patternxi, a vector
having 1 in the entry associated to the class it belongs to and
0 to all other entries) and apply centering [5]. The solutionof
(4) is the eigenvector corresponding to the top eigenvalueη of
the following generalized eigenvalue problem:

XY⊤
(

YY⊤
)−1

YX⊤ wx = η XX⊤ wx. (5)

Under certain orthonormality constraints, it is possible to
obtain multiple projection vectors by retaining the topk
eigenvectors of the generalized eigenvalue problem (5) [7], [9].
To prevent overfitting and to avoid the singularity ofXX⊤ and
YY⊤ two regularization terms,λx I andλy I with λx > 0
and λy > 0 can be inserted in (5), arriving at the so called

regularized CCA [9], [15], i.e.,

XY⊤
(

YY⊤+λy I
)−1

YX⊤wx = η
(

XX⊤+λx I
)

wx. (6)

Pattern classification can be addressed in a least-squares
formulation. More specifically, starting from a data matrix
X̃ ∈ R

d×n and scalar class labelsyi ∈ {1, 2, . . . , k},
i = 1, 2, . . . , n, wherek is the number of classes, create a
centered data matrixX and centered targetsti = yi−y, where
y denotes the average class label. Collect the centered targets
in the row vectort ∈ R

1×n and seek for the projection vector
w ∈ R

d×1 minimizing the sum-of-squares cost function [5],
[6]:

min
w

n
∑

i=1

|w⊤ xi − ti|2 = ‖w⊤X− t‖22. (7)

Having learntw∗, which minimizes (7) in a training set created
by samplingX, the class label of an unseen test data sample
z can be predicted by rounding

ŷ(z) = y + (w∗)⊤
(

z− x
)

(8)

wherex is the average data sample in the training set. The just
described regression framework was extended for class labels
coded as multivariate centered targets, i.e.,ti ∈ R

k×1 [5]. Let
T =

[

t1|t2| . . . |tn
]

∈ R
k×n. Then, (7) is generalized to

min
W

n
∑

i=1

‖W⊤ xi − ti‖22 = ‖W⊤X−T‖2F (9)

whereW ∈ R
d×k is a projection matrix and‖A‖F denotes

the Frobenius norm of matrixA. The solution of (9) is given
by [5], [6]:

WLS =
(

XX⊤
)†

XT⊤ (10)

whereA† denotes the Moore-Penrose pseudo-inverse of matrix
A. Having learntWLS in a training set, an unseen test data
samplez is classified to the class

argmax
j=1,2,...,k

yj +w⊤
j

(

z− x
)

(11)

where yj is the jth element of the average class indicator
vectory andwj is the jth column of the projection matrix
WLS.

Under mild conditions, for the particular choiceT =
(

YY⊤
)− 1

2 Y, an equivalence exists between the solution
of the least squares problem (10) and the matrixWCCA

formed by the topk eigenvectors of the generalized eigenvalue
problem (5) for classifiers, such as thek-Nearest Neighbor
and the linear support vector machines (SVMs) employing the
Euclidean distance [7]. Moreover, if the class indicator vectors
are centered (i.e.,Y1 = 0), then the target vectors inT are
also centered. Otherwise, centering is needed forT. In addition
to the straightforward choiceY with elementsYij = 1, if xi

belongs to classj and 0 otherwise, other choices are the matrix
Y′ with elements

Y ′
ij =

{

1 if xi belongs to classj
− 1

k−1 otherwise, (12)
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Fig. 1. A schematic representation of DCCA that consists of two deep neural
networks. The networks are jointly trained so that the correlation between the
output layers of the two networks is maximized. In this example, both networks
haveL = 4 hidden layers withc1 = c2 = 4 nodes (in grey),n = 3 input
nodes (in blue), ando = 2 output nodes (in orange).

or the matrixY′′ with elements

Y ′′
ij =







√

n
nj

−
√

nj

n if xi belongs to classj

−
√

nj

n otherwise,
(13)

wherenj is the sample size of thej-th class [16]. For the
centered matrixY′′, an equivalence between the multivariate
linear regression and the linear discriminant analysis was
established in [16].

B. Deep Canonical Correlation Analysis

DCCA uses multiple stacked network layers of nonlinear
transformations to simultaneously learn the representations of
two views of data that are maximally correlated [8]. Two deep
neural networks (i.e., one for each data view) are simulta-
neously trained, so that the output layers between the two
networks are maximally correlated. A schematic representation
of the two networks is illustrated in Fig. 1. In both networks,
the input layer has as many nodes as the dimensionality of
each data view (i.e.,d for the data view andk for the class
label view). The output layer haso nodes in both networks.
There areL hidden layers in the first network all having the
same number of nodesc1. Similarly, there areM hidden layers
with c2 nodes in the second network.

Given an input data samplexi in the first network, the
outputh1 ∈ R

c1×1 of the first hidden layer is given byh1 =
s(W1

1 xi + b1
1), whereW1

1 ∈ R
c1×n is the weight matrix,

b1
i ∈ R

c1×1 is the vector of biases, ands : R → R is a non-
linear activation function. The outputh1 of the first hidden
layer serves as input to the second hidden layer, which in turn
hash2 as output, and so on. The outputhl of each hidden
layer, which has as input the output of the previous hidden
layer,hl−1, is described by:

hl = s(W1
l hl−1 + b1

l ) (14)

where l = 1, 2, . . . , L. When l = L, (14) computes the final
output representationf1(xi) ∈ R

o×1 for the given instancexi.
Similarly, the outputhm of each hidden layer in the second

network is obtained by:

hm = s(W2
m hm−1 + b2

m) (15)

wherem = 1, 2, . . . ,M . Whenm = M , (15) gives the final
output representationf2(yi) ∈ R

o×1 for the given multivariate
labelyi.

Denoting byθ1 andθ2 the vectors of all parametersW1
l ,

b1
l andW2

m, b2
m of the first and second network, respectively,

the goal is to jointly learnθ1 and θ2 so that the correlation
betweenf1(X) andf2(Y) is maximized [8]. LetHX ∈ R

o×n

and HY ∈ R
o×n be the matrices having as columns the

output representations produced by the two deep networks
and H̄X = HX − 1

nHX1 and H̄Y = HY − 1
nHY 1 be

the corresponding centered matrices. The sample dispersion
matrices of the output representations,Σ̂X and Σ̂Y , are
described as follows [8]:

Σ̂X =
1

n− 1
H̄XH̄⊤

X + rXI, (16)

Σ̂Y =
1

n− 1
H̄Y H̄

⊤
Y + rY I, (17)

where rX > 0 and rY > 0 are regularization constants
guaranteeing that̂ΣX andΣ̂Y are positive definite. The sample
cross-covariance matrix̂ΣXY is defined as:

Σ̂XY =
1

n− 1
H̄XH̄⊤

Y . (18)

When k = o, the correlation between̄HX and H̄Y is given
by the matrix trace norm ofT = Σ̂

−1/2
X Σ̂XY Σ̂

−1/2
Y , i.e.,

corr(H̄X , H̄Y ) = tr
(

T⊤ T
)1/2

. (19)

The parametersθ1 and θ2 of DCCA are then estimated on
the training data in a way to optimize the total correlation
expressed by (19). To this end, back-propagation has been
exploited to estimate the gradient of the total correlation(19)
with respect to the parameters involved [8]. A quadratic penalty
with weightλb > 0 is also added in (19) for regularization.

Stochastic optimization based on mini-batches has been
found to perform poorly with respect to the correlation ob-
jective, since the correlation is a function defined on the
entire training set. Accordingly, a full-batch optimization is
performed based on a memory efficient quasi-Newton opti-
mization algorithm that approximates the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method, known as L-BFGS [17]. L-
BFGS has been successfully applied to deep learning [18].

A further optimization improvement can be achieved by
means of pre-training. The latter is a common practice used
in deep learning for the initialization of the optimization
parameters. In particular, a denoising autoencoder is usedto
initialize the parameters of each network layer [19]. A distorted
matrix X̃ is constructed by adding to the data matrixX
independent identically distributed zero-mean Gaussian noise
with varianceσ2

a. The reconstructed datâX are then formed
asX̂ = W⊤s(WX̃+ b 1⊤). Next, the L-BFGS algorithm is
used to find a local minimum of the total reconstruction error
plus a quadratic penalty, i.e.,

ϕ(W,b) = ‖X̃−X‖2F + λa (‖W‖2F + ‖b‖22), (20)

whereσ2
a andλa are hyperparameters optimized on a devel-



opment set [8]. The valuesW∗ and b∗ that minimize (20)
are used to initialize the DCCA objective and to yield the
representation for pre-training the next layer.

III. D ATASET AND FEATURE EXTRACTION

A corpus of Greek folk songs has been collected and tagged
from publicly available resources in the web, including the
lyrics and musical audio recordings [20]. The raw data have
been manually checked in order to maintain some minimum
quality and consistency. Here, we are dealing with a subset
of the corpus, which contains songs originated from the two
corpus largest classes, namely Pontus and Asia Minor.

Song lyrics are a rich information carrier. Correlations be-
tween lyrical and audio features were used for mood detection
in [21], while song lyrics along with rhythm were used for
music emotion classification in [22]. Various text processing
tasks were applied prior to lyrics feature modeling. First,
punctuation marks, special characters, numbers, and redundant
white-space characters were deleted from the lyrics. Then,
tokenization was performed by segmenting the lyrics into
tokens. The list of Greek stop words in [23] was used in order
to get rid of common words that do not bear any discriminating
power. Next, a stem vocabulary was created, including 4,553
stems. In [21], [22], the tf-idf weights were used to represent
quantitatively the song lyrics. The tf-idf weight is a numerical
statistic, quantifying the importance of a term in a document
(i.e., song lyrics) [24]. It is the product of two statistics, namely
the term frequency and the inverse document frequency. The
term frequency weighs more heavily the most frequent terms in
a specific document. On the other hand, the inverse document
frequency down-weighs the terms, which tend to appear many
times in several documents in the corpus. By doing so, the
terms that are truly representative of a document are given
higher weights.

T-distributed stochastic neighbor embedding (t-SNE)1 was
used to visualize the high-dimensional tf-idf weights by giving
each descriptor a location in a two-dimensional map [25]. t-
SNE is a variation of stochastic neighbor embedding (SNE)
[26]. It employs a symmetric version of the SNE cost function
and a Student-t distribution rather than a Gaussian one in
order to compute the similarity between two points in the
two-dimensional map. Thus, the tendency to overcrowd the
patterns in the center of the map is reduced. It is seen that
lyrics descriptors from the two classes under study are easily
discriminated in Fig. 2(a).

Monophonic wav audio recordings sampled at 22.050 KHz
are available for the time being. A 30 s long excerpt was
extracted from each audio recording. The OpenSMILE Toolkit
[27]2 was used to extract 28 MFCCs without any delta and
delta-delta coefficients from each 30 ms long frame. The
frames were 30 ms long and overlapped by 50%, resulting
in 2000 MFCC vectors for each recording in total. Finally,
an audio descriptor of size 28× 1 was used to represent
each recording by averaging the 2000 MFCC vectors. Fig. 2(b)
visualizes the audio descriptors for recordings originated from
Asia Minor and Pontus. The two-classes are not easily dis-
criminating using the aforementioned audio descriptors.

1http://lvdmaaten.github.io/tsne/
2http://www.audeering.com/research/opensmile

TABLE I. CONFUSION MATRICES FOR LYRICS DESCRIPTOR

CLASSIFICATION

Predicted Class

Ground Truth Class 1 Class 2 Class 1 Class 2

Class 1 24 0 23 1

Class 2 1 22 0 23

Class 1 23 1 24 0

Class 2 1 22 4 19

Class 1 24 0

Class 2 1 22

IV. EXPERIMENTS

Three sets of experiments are described for two-class
classification problems, employing lyrics and audio descriptors
from songs that are originated from Pontus and Asia Minor,
which are referred to as Class 1 and Class 2, hereafter.

Least squares regression defined by (7) and (8) was applied
to the lyrics descriptors extracted from the songs of the
aforementioned classes. There were 98 songs from Pontus and
another 94 songs from Asia Minor. A training set was created,
including 75% of the lyrics descriptors extracted from the
just mentioned songs, i.e., 74 lyrics descriptors from songs
of Pontus and 71 lyrics descriptors from songs of Asia Minor.
The remaining 24 lyrics descriptors from songs of Pontus and
23 ones from songs of Asia Minor built the test set. The
solution of (7) was a projection vectorwLS ∈ R

4553×1. If the
predicted class label by (8) is the same with the actual label,
a correct classification will occur. An average accuracy of
97.02% was measured using 5-fold stratified cross validation.
The confusion matrices in the 5 folds are listed in Table I.

The aforementioned least squares regression was also ap-
plied to the audio descriptors extracted from the songs of the
aforementioned classes. There were 57 audio recordings from
Pontus and another 70 from Asia Minor. A training set was
created, including 75% of the audio descriptors extracted from
these audio recordings, i.e., 43 audio descriptors from songs
of Pontus and 53 audio descriptors from songs of Asia Minor.
The remaining 14 descriptors from songs of Pontus and 17
ones from songs of Asia Minor built the test set. The solution
of (7) was a projection vectorwLS ∈ R

28×1. If the predicted
class label by (8) is the same with the actual label a correct
classification will occur. An accuracy of 72.90% was measured
in 5-fold stratified cross validation. The confusion matrices in
the 5 folds are listed in Table II. For the choices of class
indicator matricesY, Y′, and Y′′ defined in Section II-A,
accuracies ranging from 65% to 69% were measured in the
same 5-fold stratified cross-validation setting.

DCCA was applied to running 127 MFCC descriptors
corresponding to the 28 MFCCs of 9 overlapped frames across
each recording, because it is pointless to explicitly average the
MFCCs within the DCCA. Both networks hadc1 = c2 = 28
nodes in the input layer (i.e., equal to the number of feature
attributes) ando = 2 nodes in the output layer (i.e., equal to the



(a) (b)

Fig. 2. Visualization using t-SNE of the (a) lyrics descriptors and (b) audio descriptors for Greek folk songs originated from Asia Minor and Pontus (Black
Sea).

TABLE II. C ONFUSION MATRICES FOR AUDIO DESCRIPTOR

CLASSIFICATION

Predicted Class

Ground Truth Class 1 Class 2 Class 1 Class 2

Class 1 9 5 11 3

Class 2 4 13 7 10

Class 1 9 5 9 5

Class 2 3 14 6 11

Class 1 11 3

Class 2 1 16

number of classes). The number of hidden layersL was also
chosen to be the same for both networks. For simplicity, each
hidden layer had the same number of nodes. The input data
X in the first network were the MFCC descriptors extracted
for each song. In the second network, the class membership
indicator matrix was fed as input. This matrix had for each data
point a vector having1 in the entry associated to the class it
belonged to and0 in all other entries.

The dcca C++ code3 provided with [8] was compiled and
run on a Linux machine. The code relies on Boost libraries
(headers only) and the Intel Math Kernel Library. An attempt
was made to tune the hyperparameters on a validation set (e.g.,
15% the size of the whole dataset), but the results obtained
were comparable to the results obtained when the default hy-
peraparameter values provided with the code distribution were
used. Thus, all the experiments were run using the distributed
hyperparameter values, i.e.: a) the regularization parameter λa

for the input, hidden and output layers pre-training for the
first network was set to values4.711 × 10−4, 0.0052, and
2.424 × 10−4, respectively; b) the corresponding values for
the second network were3.153 × 10−4, 5.504 × 10−4, and
2.125 × 10−4; c) in the first network, the varianceσa of the
Gaussian noise in the denoising autoencoder pre-training of
input and hidden layers was set to values0.1538 and0.0264,
respectively, while for the second network these values were

3https://homes.cs.washington.edu/∼galen/files/dcca.tgz

TABLE III. A VERAGE TOTAL DCCA CORRELATION AND

CLASSIFICATION ACCURACY ACROSS ALL THE FOLDS IN THE TEST SET

WHEN THE SVM CLASSIFIER IS APPLIED TO THE OUTPUT DATA OBTAINED
UNDER DIFFERENT DEEP NEURAL NETWORK STRUCTURE.

Number of
hidden layers

Number of
nodes per
hidden layer

Test set
correla-
tion

Accuracy

2 256 0.43 66%
4 128 0.42 59%
4 256 0.48 69%
4 1024 0.44 64%
10 256 0.34 63%

0.0096 and0.1566; d) the regularization parametersλb, rX and
rY were set to values0.045, 41.67, and 59.06, respectively.
The convergence tolerance of the L-BFGS algorithm was set to
10−4 and10−3 for the first and second network, respectively.
The activation function for all the layers was a sigmoid
function based on the cubic root.

The experiments were run with10-fold stratified cross
validation with 75% of the data used for training and the
remaining25% used for testing. The classification decision
on the output data of the first network was conducted by
means of a Support Vector Classifier, a multi-layer perceptron,
and a naive classifier that assigns the data point to the class
that has the maximum value. The difference in classification
performance in terms of accuracy between the three classi-
fication methods is negligible. Experiments were conducted
for different number of hidden layers and different number
of nodes in hidden layers. Some representative results on the
average classification accuracy across all folds for the SVM
classifier are listed in Table III. According to Table III, the
best classification result was obtained with a deep neural
network with4 hidden layers and256 nodes in each layer. It is
also worth mentioning that experiments with deeper networks
have been conducted (i.e.,50 − 80 hidden layers), yielding
unsatisfactory classification results. This can be attributed to
the fact that the data size is not adequately big for really deep
networks.

In order to check whether the accuracy differences are
statistically significant, we apply the approximate analysis
in [28]. Let us assume that the accuracies̟1 and ̟2 are



binomially distributed random variables. If̟̂ 1, ˆ̟ 2 denote
the empirical accuracies, and̟ = ˆ̟ 1+ ˆ̟ 2

2 , the hypothesis
H0 : ̟1 = ̟2 = ̟ is tested at 95% level of significance.
The accuracy difference has varianceβ = 2̟(1−̟)

nt
, wherent

is the number of test samples (i.e., 47 for lyrics descriptors and
31 for audio descriptors). Forζ = 1.65

√
β, if ˆ̟ 1 − ˆ̟ 2 ≥ ζ,

we rejectH0 with risk 5% of being wrong. The aforementioned
analysis certifies that the accuracy difference of 3.9% between
the least squares regression and the DCCA is not statistically
significant, becauseζ=19.03%. Moreover, for lyrics descriptor
classification, the accuracy differences across the folds can
be shown to be statistically insignificant. However, for audio
descriptor classification, the accuracy differences in certain
folds are shown to be statistically significant (e.g., between
the fold corresponding to the top left confusion matrix and the
bottom left confusion matrix in Table II).

V. CONCLUSIONS

Experimental evidence has been disclosed for classifiers re-
sorting to CCA and DCCA in a two-class problem, employing
lyrics and audio descriptors extracted from Greek folk songs.
For CCA, we have exploited its equivalence with least squares
regression. Moreover, we have verified experimentally that
there are not any statistically significant accuracy differences
between the CCA and the DCCA. Future research could exploit
the auditory spectrotemporal modulations that were shown to
yield very good results in Western music genre recognition
[29]. An accuracy of 91% has been achieved in preliminary
experiments with the auditory spectrotemporal modulations in
the two-class problem studied in this paper.
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