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Abstract—We are interested in Greek folk music genre clas- two sets of random vectors [4]. Such random vectors may
sification by resorting to canonical correlation analysis CCA). capture two “different views” of the same underlying patter
Here, the genre is related to the place of origin of the song.fle One popular use of the CCA is in supervised learning. That
CCA learns a linear transformation of the song lyrics descrptors  js  when one view is derived from the data and the other
that is highly correlated with their genre labels as well as aother view is derived from the class labels [5]-[7]. In particylar

linear transformation of the audio features extracted from music : ; ; ;
recordings, which is maximally correlated with their genre labels. the CCA is exploited 1o learn a linear transformation of the

In the latter task, thanks to the deep CCA (DCCA), deep SON9 lyrics descriptors that is maximally correlated _Wt
nonlinear transformations of the audio features are learnt which ~ SONg genre labels as well another linear transformatiomef t

are maximally correlated with the genre labels. Experimenal ~ audio features extracted from each song recording, which is
findings are disclosed for a two-class genre recognition pldem,  also highly correlated with the genre labels. In the latbeskf
employing folk songs originated from Pontus and Asia Minor.  deep nonlinear transformations of the audio features maliim
It is demonstrated that the CCA achieves an average accuracy correlated with the genre labels are also learnt by meartseof t
of 97.02% across the 5 folds, when the term frequency-invees  so-called deep CCA (DCCA) [8].
document frequency features model the song lyrics. By modelg
the music signal of each song with 28 mel-frequency cepstral The major contribution of the paper is in the experimental
coefficients (MFCCs) extracted from each frame and averaged findings reported for a two-class genre recognition problem
over all frames, the average accuracy of the CCA drops to 72% which employs folk songs originated from Pontus and Asia
across the 5 folds. The DCCA vyields an accuracy of 69% for  Minor. It is demonstrated that the CCA achieves an average ac
audio-based genre recognition. curacy of 97.02% across the 5 folds, when the term frequency-
Keywords—Canonical Correlation Analysis; Least-Squares Re- inverse document frequency (tf-idf) weights model the song
gression; Deep Canonical Correlation Analysis, Greek Fdlkusic  lyrics. However, audio-based genre classification turngdm
Classsification. be a tough problem for the two-class problem under study. By
modeling the music signal of each song with 28 mel-frequency
cepstral coefficients (MFCCs) extracted from each frame and
averaged next over all frames, the average accuracy of the
Music Information Retrieval (MIR) has been developed CCA drops to 72.9% across the 5 folds. For audio-based genre
mainly for Western popular and classical music. Howevergclassification using MFCCs, the DCCA yields an accuracy of
the interest for non-Western music continuously grows as i$9%. In this task, the difference between the accuracy of the
evidenced by the increasing number of papers in recent MIRZCA and that of the DCCA is not statistically significant at
conferences. Computational methods for automatic claasifi 95% level of confidence. However, in certain folds of the sros
tion and topological clustering of large folk music datadsas Vvalidation setting, the difference between the accuramfigise
are described in [1]. A platform that extracts and exploigshp CCA and the DCCA is found to be statistically significant.
annotations in non-Western music, providing musicoldgica
meaningful representations can be found in [2].

I. INTRODUCTION

The outline of the paper is as follows. Section Il describes
the CCA and the DCCA. The dataset used in the experiments
Greek folk music extends far back in time. It consists ofand the extracted features are discussed in Section Ill. The
compositions, usually characterized by the place of originexperiments conducted are detailed in Section IV and cenclu
where the songs are performed or created, such as Pont®ons are drawn in Section V.
Asia Minor, Macedonia, Epirus, Thrace, Aegean islands, etc
Apart from regional criteria, Greek folk songs are clasdifie 1l. CLASSIFIERS BASED ONCANONICAL CORRELATION
into akritic, historical, klephtic, ballads, religiousve, wed-
ding, satiric, immigrant, lament, work, proverbial, luias,
and baby dandling ones [3]. They cover the whole spectru
of social life, including human life milestones, the natfn
history, or community celebrations.

Throughout the paper, scalars appear as lowercase letters
e.g., \;), vectors are denoted by lowercase boldface letters
nﬁe.g.,x), and matrices are indicated by uppercase boldface
letters (e.g.X). I stands for the identity matrix of compatible
dimensions] is the vector of ones of compatible dimensions,

In this paper, we are interested in Greek folk music genre’ denotes vector/matrix transposition, dpd|, denotes thé,
classification by resorting to canonical correlation as@ly norm of vectorx. Lowercase italic boldface letters are reserved
(CCA). Here, the genre is related to the place of origin offor random vectors (e.g;). R andZ denote the fields of real,
the song. The CCA finds the maximal correlations betweemnd integer numbers, respectively.



A. Canonical Correlation Analysis regularized CCA [9], [15], i.e.,

CCA has been applied successfully in various applicationsxy T (YYT 4+, I)*lyxT w, = 1(XX" +2.I)w,. (6)
[9], including natural language processing [10], [11], epte
processing [12], [13], and multimodal signal processing][1
It uses two views of a set of patterns and projects them
onto a lower-dimensional space in which they are maximally  pattern classification can be addressed in a least-squares
correlated. CCA has also been used for supervised leamingyrmylation. More specifically, starting from a data matrix
where one view is derived from the data and the other view isx = Rdxn gnd scalar class labels; € {1,2,....k},

derived from the class labels [S]-[7]. In this setting, trted , _ | 9 ., \wherek is the number of classes. create a
are projected onto a lower-dimensional space dictated 8y theentered data matriX and centered targets = y; — 7, where
label information. 7 denotes the average class label. Collect the centeredgarge

Formally, letz € R%*! andy € R**! pe two random in the row vectort ¢ R'*"™ and seek for the projection vector
vectors with covariance matricés, € R%<¢ andx,, € RF*k, W € R?*! minimizing the sum-of-squares cost function [5],
respectively. LetS,, € R?** denote the cross-covariance [6]: N
matrix of the aforementioned random vectors. CCA computes . T 2 T 2

L — T = X —t|l5. 7
two projection vectorsv, € R¥! andw, € R¥*!, such that Hiinz W xi = tif” = |lw I2 (")
the correlation coefficient ) = o ) o
T w Having learntw*, which minimizes (7) in a training set created
— Wo Hay Wy (1) by samplingX, the class label of an unseen test data sample

VWl e w, /W;/r 2, Wy, z can be predicted by rounding

N _ A\ T —
is maximized. LetX = [x1[x2|...|x,] € R¥*" be the data y2) =7+ (W) (z-X%) 8)
matrix andY = [y1|y2| e |yn] € RFX" pe the label matrix. wherex is the average data sample in the training set. The just
Assume that bothx; andy; are centered. If the covariance described regression framework was extended for class$slabe
matrices in (1) are replaced by sample dispersion matricesoded as multivariate centered targets, tes R¥*! [5]. Let
the following optimization problem should be solved: T = [t1]t2]...[t,] € R¥*". Then, (7) is generalized to

. w, XY 'w n
(w2, wy) = argmax m\/m min 3 Wi~ 3= WX T} (9)
Y z kd Y Y i=1
T @)
The objective function in (2) is the sample correlation co-
efficient, which is invariant to the scaling ok, and w,. 51 161
Accordingly, the CCA optimization problem can be expresse&)y [5]. [6]:

whereW € R¥** is a projection matrix and A | » denotes
the Frobenius norm of matriA. The solution of (9) is given

. N . T\ T
as a constrained optimization problem, i.e., Wis = (XX ) XT (10)
argmax w, XYTwy WhereA_T denotes the Moore-Penrose pseudo-inverse of matrix
Wa, Wy A. Having learntW ¢ in a training set, an unseen test data
subject to w, XX w, = 1, (3) samplez is classified to the class
w;— YY' wy, = L. _arig;nayic y;+ w;r (z — E) (12)
J=1,2,...,

T o . .
I YY" is non-singulary; can be found by solving wherey; is the jth element of the average class indicator

max w/! XYT (YyT)*l YXT w, vectory andw; is the jth column of the projection matrix
we " 4 Wis.
subject to w, XX w, = 1.

The just mentioned assumption fY ' can be easily main- . . _ )
tained in practice. Simply, start with a class membership Under mild conditions, for the particular choic® =
indicator matrix (i.e., append for each pattextp a vector (YY') 2 Y, an equivalence exists between the solution
having 1 in the entry associated to the class it belongs to andf the least squares problem (10) and the maWk:ca

0 to all other entries) and apply centering [5]. The solutidn formed by the top: eigenvectors of the generalized eigenvalue
(4) is the eigenvector corresponding to the top eigenvalae  problem (5) for classifiers, such as tieNearest Neighbor

the following generalized eigenvalue problem: and the linear support vector machines (SVMs) employing the
. o1 . - Euclidean distance [7]. Moreover, if the class indicatartaes
XY' (YY) YX'w, =nXX' w,. (5)  are centered (i.eY1 = 0), then the target vectors iff' are

also centered. Otherwise, centering is neede@fdn addition

Under certain orthonormality constraints, it is possibte t . . . .
Y P to the straightforward choic¥ with elementsY;; = 1, if x;

obtain multiple projection vectors by retaining the tadp . . X :
eigenvectors of the generalized eigenvalue problem (5]97] gﬁlon?hs t(IJ clasiand 0 otherwise, other choices are the matrix
To prevent overfitting and to avoid the singularityXX " and with elements _
YY ' two regularization terms), I and\, I with A\, > 0 Vi { 1 if x; belongs to clasg (12)

17 _

and A, > 0 can be inserted in (5), arriving at the so called ﬁ otherwise,



( canonical correlation analysis ] network is obtained by:

.1’ .1. h,, = s(W2 h,,_1 +b2) (15)
output layer output layer
o BN e e IR N wherem = 1,2,..., M. Whenm = M, (15) gives the final
00 9 00O output representatioft(y;) € R°*! for the given multivariate
labely;.
e agrs @ @00 S @ 000 Denoting byf; and @, the vectors of all parametel&//,
' b} andW?2,, b2, of the first and second network, respectively,
@0 00 @0 00 the goal is to jointly learrf; and 8, so that the correlation
betweenf;(X) and f>(Y) is maximized [8]. LeH x € R°*"
__________ . .‘. “.‘ and Hy € R°*" be the matrices having as columns the
outver e output representations produced by the two deep networks
P ‘ ‘ . P . . . andHX = HX7%HX:|_ andHy = Hy*%Hy]_ be

network 1 network 2

the corresponding centered matrices. The sample dispersio

Fig. 1. A schematic representation of DCCA that consistswofdeep neural ~ Matrices of the output representatiorsx and Xy, are
networks. The networks are jointly trained so that the datien between the  described as follows [8]:

output layers of the two networks is maximized. In this exEmpoth networks

have . = 4 hidden layers withc; = c2 = 4 nodes (in grey)n = 3 input EX
nodes (in blue), and = 2 output nodes (in orange).

1 -
mHXH} +rx1, (16)

~ 1 _ _
3y = lHyH;—i-ryI, (17)

n —

or the matrixY” with elements o
wherery > 0 andry > 0 are regularization constants

/% — /% if x; belongs to clasg guaranteeing that anqﬁy are positive definite. The sample
Y= A (13)  cross-covariance matriX xy is defined as:
— /X otherwise, 1
Sxy = ——HyH;. 18
wheren; is the sample size of thg-th class [16]. For the T oY (18)

centered matrixY”’, an equivalence between the multivariate
linear regression and the linear discriminant analysis wa
established in [16].

When k = o, the correlation betweeH y and Hy is given
%y the matrix trace norm dr’ = 2}1/2 Yxy 2;1/2, i.e.,

corr(Ax, Hy) = tr(TT T)"/?. (19)
B. Deep Canonical Correlation Analysis The parameter®; and 6, of DCCA are then estimated on

DCCA uses multiple stacked network layers of nonIinearthe training data in a way to optimize the total correlation

transformations to simultaneously learn the represemsitof expressed by (19). To this end, back-propagation has been

two views of data that are maximally correlated [8]. Two deepeXpIOIted o estimate the gradient of the total correla(ibd)

neural networks (i.e., one for each data view) are simultay\’Ith respect to the parameters involved [8]. A quadraticahgn

neously trained, so that the output layers between the th)\”th weight A, > 0 is also added in (19) for regularization.
networks are maximally correlated. A schematic represiemnta Stochastic optimization based on mini-batches has been
of the two networks is illustrated in Fig. 1. In both netwarks found to perform poorly with respect to the correlation ob-
the input layer has as many nodes as the dimensionality géctive, since the correlation is a function defined on the
each data view (i.eq for the data view and: for the class entire training set. Accordingly, a full-batch optimizaii is
label view). The output layer has nodes in both networks. performed based on a memory efficient quasi-Newton opti-
There areL hidden layers in the first network all having the mization algorithm that approximates the Broyden-Fletche
same number of nodes. Similarly, there aré\/ hidden layers  Goldfarb-Shanno (BFGS) method, known as L-BFGS [17]. L-

with ¢, nodes in the second network. BFGS has been successfully applied to deep learning [18].
Given an input data Samplﬁi in the first network, the A further Optimization improvement can be achieved by
outputh; € R**! of the first hidden layer is given blg; =  means of pre-training. The latter is a common practice used

s(W1x; + bl), whereW! € Re*" is the weight matrix, in deep learning for the initialization of the optimization
bl € Re*! is the vector of biases, and: R — R is a non-  parameters. In particular, a denoising autoencoder is tsed
linear activation function. The output, of the first hidden initialize the parameters of each network layer [19]. Aalittd
layer serves as input to the second hidden layer, which im turmatrix X is constructed by adding to the data mati¥
hash, as output, and so on. The outphi of each hidden independent identically distributed zero-mean Gaussiisen
layer, which has as input the output of the previous hiddewith varianceo;. The reconstructed dai are then formed
layer, h;_1, is described by: asX = W' s(WX +b1'"). Next, the L-BFGS algorithm is

1 1 used to find a local minimum of the total reconstruction error

by = s(Wj by +by) (14) plus a quadratic penalty, i.e.,

wherel = 1,2,..., L. When! = L, (14) computes the final TR ST 2 2
output representatiofy (x;) € R°*! for the given instance;. P(W,b) = [[X = X[ + Ao ([WIJF + [[bll2), (20)
Similarly, the outputh,, of each hidden layer in the second wheres? and )\, are hyperparameters optimized on a devel-



TABLE I. CONFUSION MATRICES FOR LYRICS DESCRIPTOR

opment set [8]. The valueSV* and b* that minimize (20) CLASSIFICATION

are used to initialize the DCCA objective and to yield the

representation for pre-training the next layer. Predicted Class
IIl. DATASET AND FEATURE EXTRACTION Ground Truth|| Class 1| Class 2|| Class 1| Class 2
A corpus of Greek folk songs has been collected and tagged  Class 1 24 0 23 1

from publicly available resources in the web, including the
lyrics and musical audio recordings [20]. The raw data have
been manually checked in order to maintain some minimum Class 1 23 1 24 0
quality and consistency. Here, we are dealing with a subset

of the corpus, which contains songs originated from the two Class 2 1 22 4 19
corpus largest classes, namely Pontus and Asia Minor.

Class 2 1 22 0 23

: _ . . . Class 1 24 0
Song lyrics are a rich information carrier. Correlations be

tween lyrical and audio features were used for mood detectio Class 2 1 22
in [21], while song lyrics along with rhythm were used for
music emotion classification in [22]. Various text procagsi
tasks were applied prior to lyrics feature modeling. First, IV. EXPERIMENTS
punctuation marks, special characters, numbers, and dedtin
white-space characters were deleted from the lyrics. Then, Three sets of experiments are described for two-class
tokenization was performed by segmenting the lyrics intoclassification problems, employing lyrics and audio dgxors
tokens. The list of Greek stop words in [23] was used in ordefrom songs that are originated from Pontus and Asia Minor,
to get rid of common words that do not bear any discriminatingvhich are referred to as Class 1 and Class 2, hereafter.
power. Next, a stem vocabulary was created, including 4,553
stems. In [21], [22], the tf-idf weights were used to represe

Least squares regression defined by (7) and (8) was applied

o . : L ; to the lyrics descriptors extracted from the songs of the

quantitatively the song lyrics. The tf-idf weight is a nuncet .

statistic, quantifying the importance of a term in a documen2iorémentioned classes. There were 98 songs from Pontus and
another 94 songs from Asia Minor. A training set was created,

(I.e., song lyrics) [24]. Itis the product of two statisticamely igcluding 75% of the lyrics descriptors extracted from the

the term frequency and the inverse document frequency. Thust mentioned sonas. i.e.. 74 Ivrics descriptors from son
term frequency weighs more heavily the most frequent terms il gs, I.€., y P 9

a specific document. On the other hand, the inverse docume%PomuS and 7214 I?/rics %escriptors ffrom songs offAI\Dsia Minor.d
- o e remainin rics descriptors from songs of Pontus an

f_reque_ncy down-weighs the terms, which tend to appear many, -, og frorrglJ sonés of AsiapMinor built thge test set. The

times in several documents in the corpus. By doing so, th '

i i i 4553 %1
terms that are truly representative of a document are giveﬁomt.Ion of (7) was a projection vector,,s € R - If the
higher weights predicted class label by (8) is the same with the actual Jabel

a correct classification will occur. An average accuracy of
T-distributed stochastic neighbor embedding (t-SNExs  97.02% was measured using 5-fold stratified cross validatio
used to visualize the high-dimensional tf-idf weights byigg ~ The confusion matrices in the 5 folds are listed in Table I.
each descriptor a location in a two-dimensional map [25]. t- The af tioned least . |
SNE is a variation of stochastic neighbor embedding (SNE})Ii € alorementioned least squares regression was aiso ap-

[26]. It employs a symmetric version of the SNE cost function ed to th? audio descriptors extracted from_ the Songs ef th
forementioned classes. There were 57 audio recordings fro

and a Student-t distribution rather than a Gaussian one iﬁontus and another 70 from Asia Minor. A training set was

order to compute the similarity between two points in the X . . .
two-dimensior?al map. Thus tﬁ/e tendency to gvercrowd th reated, including 75% of the audio descriptors extraateih f
i i Igese audio recordings, i.e., 43 audio descriptors frongson

patterns in the center of the map is reduced. It is seen th ) . -

lyrics descriptors from the two classes under study ardyeasi of Pontus .ar.1d 53 audio qescrlptors from songs of Asia Minor.

discriminated in Fig. 2(a). The remaining 14 descriptors from songs of Pontus and 17

ones from songs of Asia Minor built the test set. The solution

Monophonic wav audio recordings sampled at 22.050 KHzof (7) was a projection vectow s € R?*! If the predicted

are available for the time being. A 30 s long excerpt wasclass label by (8) is the same with the actual label a correct

extracted from each audio recording. The OpenSMILE Toolkitclassification will occur. An accuracy of 72.90% was meagure

[27]? was used to extract 28 MFCCs without any delta andn 5-fold stratified cross validation. The confusion maggdn

delta-delta coefficients from each 30 ms long frame. Thehe 5 folds are listed in Table Il. For the choices of class

frames were 30 ms long and overlapped by 50%, resultinghdicator matricesY, Y’, and Y” defined in Section II-A,

in 2000 MFCC vectors for each recording in total. Finally, accuracies ranging from 65% to 69% were measured in the

an audio descriptor of size 2& 1 was used to represent same 5-fold stratified cross-validation setting.

each recording by averaging the 2000 MFCC vectors. Fig. 2(b)

visualizes the audio descriptors for recordings origiddtem DCCA was applied to running 127 MFCC descriptors
Asia Minor and Pontus. The two-classes are not easily diseorresponding to the 28 MFCCs of 9 overlapped frames across
criminating using the aforementioned audio descriptors.  €ach recording, because it is pointless to explicitly ayeriaie
MFCCs within the DCCA. Both networks had = cy = 28
Ihttp://ivdmaaten.github.io/tsne/ nodes in the input layer (i.e., equal to the number of feature

2http://www.audeering.com/research/opensmile attributes) an@ = 2 nodes in the output layer (i.e., equal to the
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Fig. 2. Visualization using t-SNE of the (a) lyrics desooifst and (b) audio descriptors for Greek folk songs origithdtem Asia Minor and Pontus (Black
Sea).

TABLE II. CONFUSION MATRICES FOR AUDIO DESCRIPTOR TABLE 1. AVERAGE TOTAL DCCA CORRELATION AND
CLASSIFICATION CLASSIFICATION ACCURACY ACROSS ALL THE FOLDS IN THE TEST SET
WHEN THE SVM CLASSIFIER IS APPLIED TO THE OUTPUT DATA OBTAINED
Predicted CIaSS UNDER DIFFERENT DEEP NEURAL NETWORK STRUCTURE
Ground Truth|| Class 1| Class 2|| Class 1| Class 2 Number  of | Number  of|| Test set| Accuracy
hidden layers| nodes per|| correla-
Class 1 9 5 11 3 hidden layer tion
0,
Class 2 4 13 7 10 2 256 0.43 66%
4 128 0.42 59%
Class 1 9 5 9 5 4 256 0.48 69%
Class 2 3 14 6 11 4 1024 0.44 64%
10 256 0.34 63%
Class 1 11 3
Class 2 1 16 0.0096 and0.1566; d) the regularization parametexg, rx and

ry were set to value§.045, 41.67, and 59.06, respectively.

. The convergence tolerance of the L-BFGS algorithm was set to
number of classes). The number of hidden layer&as also  10-4 and10-3 for the first and second network, respectively.

chosen to be the same for both networks. For simplicity, €aChhe activation function for all the layers was a sigmoid
hidden layer had the same number of nodes. The input datnction based on the cubic root.

X in the first network were the MFCC descriptors extracted } ) B
for each song. In the second network, the class membership The experiments were run wit0-fold stratified cross
indicator matrix was fed as input. This matrix had for eactada Validation with 75% of the data used for training and the
point a vector havind in the entry associated to the class it remaining25% used for testing. The classification decision
belonged to and in all other entries. on the output data of the first network was conducted by
i ) i means of a Support Vector Classifier, a multi-layer perceptr
The deca C++ codé provided with [8] was compiled and  and a naive classifier that assigns the data point to the class
run on a Linux machine. The code relies on Boost librarieshat has the maximum value. The difference in classification
(headers only) and the Intel Math Kernel Library. An attemptperformance in terms of accuracy between the three classi-
was made to tune the hyperparameters on a validation set (€.gcation methods is negligible. Experiments were conducted
15% the size of the whole dataset), but the results obtainegy, different number of hidden layers and different number
were comparable to the results obtained when the default hysf nodes in hidden layers. Some representative results ®n th
peraparameter values provided with the code distributierew ayerage classification accuracy across all folds for the SVM
used. Thus, all the experiments were run using the dis&tbut c|assifier are listed in Table Ill. According to Table IIl,eth
hyperparameter values, i.e.: a) the regularization palee  pest classification result was obtained with a deep neural
for the input, hidden and output layers pre-training for thepetwork with4 hidden layers an@56 nodes in each layer. It is
first network was set to value$.711 x 10~%, 0.0052, and  aiso worth mentioning that experiments with deeper neteork
2.424 x 10, respectively; b) the corresponding values forhave been conducted (i.&) — 80 hidden layers), yielding
the second network wer153 x 104, 5.504 x 107%, and  ynsatisfactory classification results. This can be atteitho

2.125 x 10—4;_ C) i_n the first n_epwork, the variance, of t_he the fact that the data size is not adequately big for realgpde
Gaussian noise in the denoising autoencoder pre-training ¢etworks.

input and hidden layers was set to values538 and0.0264,

respectively, while for the second network these valuesswer In order to check whether the accuracy differences are
statistically significant, we apply the approximate anialys

3https://homes.cs.washington.edgalen/files/dcca.tgz in [28]. Let us assume that the accuracies and w, are




binomially distributed random variables. H,<, denote [9]
the empirical accuracies, arid = =2, the hypothesis

Hy : wy = wy = w Is tested at 95% level of significance.
The accuracy difference has variante- 2%:“’), wheren;

is the number of test samples (i.e., 47 for lyrics descripéord

31 for audio descriptors). Fay = 1.65+/3, if &1 — @2 > (,

we rejectH, with risk 5% of being wrong. The aforementioned [11]
analysis certifies that the accuracy difference of 3.9% betw

the least squares regression and the DCCA is not statigtical
significant, becausé=19.03%. Moreover, for lyrics descriptor [12]
classification, the accuracy differences across the folds c
be shown to be statistically insignificant. However, for iaud
descriptor classification, the accuracy differences intaper
folds are shown to be statistically significant (e.g., bemwe
the fold corresponding to the top left confusion matrix alnel t
bottom left confusion matrix in Table II).

(13]

(14]

V. CONCLUSIONS

Experimental evidence has been disclosed for classifiers r¢l5]
sorting to CCA and DCCA in a two-class problem, employing
lyrics and audio descriptors extracted from Greek folk song [16]
For CCA, we have exploited its equivalence with least scgiare
regression. Moreover, we have verified experimentally that!’]
there are not any statistically significant accuracy déferes
between the CCA and the DCCA. Future research could explo[ﬁls]
the auditory spectrotemporal modulations that were shawn t
yield very good results in Western music genre recognitiorn g
[29]. An accuracy of 91% has been achieved in preliminary
experiments with the auditory spectrotemporal modulation
the two-class problem studied in this paper. [20]
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