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Abstract—In this paper, we address the problem of image 
tagging and we propose automatic methods for image tagging, 
using tensor decompositions. Tensors are a suitable way of 
mathematically representing multilink relations. Another, 
complementary structure that captures the aforementioned high-
order relations is the hypergraph. More specifically, three 
different matrices are derived from the hypergraph, namely, the 
incidence, adjacency, and affinity matrices. The just mentioned 
matrices are used to create slices of a novel tensor structure, 
which combines users' and images' relations. Four methods are 
exploited to decompose the tensor, i.e., the Higher Order 
Singular Value Decomposition (HOSVD), the Canonical 
Decomposition/Parallel Factor Analysis (CANDECOMP/ 
PARAFAC, CP), the Non-negative Tensor Factor Analysis 
(NTF), and Tucker Decomposition (TD). Experiments conducted 
on a dataset retrieved from Flickr demonstrate the potential of 
the proposed approach.  

Keywords—Tensor Decompositions; Image Tagging;  

I.  INTRODUCTION 
Social tagging is an important feature that allows users to 

annotate items, like images, songs, posts, etc. with keywords 
[1]. In recent years, due to the rapid growth of social media, 
image tag recommendation (or automatic image annotation) 
has emerged as a very interesting and hot research area. Indeed, 
a lot of effort has focused mainly on the image tag 
recommendation, enabling a quick and economic organization, 
browsing, and searching of user data. Most social media record 
user data (i.e., profiles), geographical data, and content-related 
descriptions of images. However, the assignment of a wide 
variety of labels to one particular image as well as the 
assignment of the same label to different images with respect to 
their visual appearance make image tag recommendation a 
difficult problem.  

Undoubtedly image tagging is a multifaceted problem that 
is driven by multiple sources of information, such as visual 
similarity, the correlation between tags and visual features, the 
correlation between users, as is captured by friendships or 
group relations, and the user interests. Geo-location is another 
factor that heavily influences image tagging.  

The aforementioned relations cannot be confined to pairs, 
yielding naturally to either hypergraphs [2] or hypermatrices 
commonly referred to as tensors in the electrical 
engineering/computer science jargon [3]. In the following, we 

shall use the term tensor to be on par with the existing 
literature. Tensors are a natural generalization of matrices 
into higher dimensions and could be exploited in the solution 
of image tagging problem, because they could: a) exploit the 
multiple correlations between the data, b) create groups of 
common characteristics, and c) capture the similarity between 
features [4], [5].  

More specifically, this paper makes the following 
contributions: 

 Starting with a hypergraph, three types of matrices are 
derived namely, the incidence, the adjacency, and the 
affinity ones that are used to define the slices of an 
appropriate tensor.  

 A novel tensor structure is proposed that efficiently 
captures both user and image relations.  

 High-order singular value decomposition (HOSVD) is 
demonstrated that outperforms other tensor 
decompositions, such as the Canonical decomposition/ 
Parallel factor analysis (CANDECOMP/PARAFAC, CP), 
the non-negative tensor factorization (NTF), or the 
Tucker decomposition (TD), when it is used to extract a 
latent semantic model to be exploited for image tagging.  

The remainder of this paper is organized as follows. 
Related work is surveyed in Section II. Section III details the 
proposed method. Experimental results are discussed in Section 
IV. Finally, conclusions are drawn in Section V. 

II. RELATED WORK 
Many researchers have attempted to address the problem of 

image tagging, focusing mainly on the image content and the 
2-way item representations. More specifically, Support Vector 
Machines [6], or artificial neural networks [7] were used for 
image classification. Automatic image annotation thanks to a 
multiple Bernoulli relevance model capturing the joint 
probability distribution of the possible annotations and the 
image feature vectors was proposed in [8]. Other techniques 
have focused on nearest neighbors [9], [10], structural group 
sparsity for feature selection to boost the annotation 
performance. The just described techniques distill the 
correlations among multiple tags [11] or semantic distance 
functions [12]. Another image annotation method based on 
image search was presented in [13]. Detailed surveys on 



automatic annotation techniques can be found in [5], [14] and 
[15]. More recently, a new method for image tagging and geo-
location prediction was proposed that was based on hypergraph 
learning [2].  

On the other hand, in the field of recommendation systems, 
many methods have adopted tensors, because of the powerful 
properties of tensor decompositions. Symeonidis et al. 
proposed representing the data by 3rd-order tensors on which 
latent semantic analysis and dimensionality reduction was 
performed, using HOSVD [16]. A pairwise interaction tensor 
factorization model was proposed in [17], which is a special 
case of the TD model with linear runtime for both learning and 
prediction. The model was learned with an adaptation of the 
Bayesian personalized ranking criterion. Existing methods that 
use information from multi-type interrelated objects may also 
employ graphs [18], [19]. Multi-label image tagging within a 
sparse coding framework was addressed in [20]. 

In this paper, we propose a methodology for automatic 
image tagging, which aims to exploit the information from a 
hypergraph to build a tensor, capturing relations between 
images and users. The proposed methodology extends the work 
in [5] and is described in detail next. 

III. METHODOLOGY 
The proposed image tag recommendation scheme is shown 

in Fig. 1. It consists of three main steps: tensor creation, tensor 
decomposition, and tag recommendation. These steps are 
described in detail in the following subsections. In the paper, 
the notation used in [4] is adopted. 
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Fig. 1  Methodology of the proposed algorithm. 

A. Dataset description and tensor creation 
Motivated by work in [5], we are interested in creating the 

three 3rd-order tensors shown in Fig. 2. As can be seen, the 
slices of these tensors are square matrices.  

The user tensor consists of  slices, namely: a) 
user relationships induced by friendships, b) user relationships 
induced by their participation into groups, c) user relationships 
induced by image uploading, d) user relationships induced by 
the geo-tags of the uploaded images, and e) user relationships 
induced by the tags of the uploaded images. 

The image tensor consists of  slices, namely: 
a) image relationships induced by the users, b) image 
relationships induced by their geo-tags, c) image relationships 
induced by their tags, and d) visual image similarities. 

The just-described tensors can be combined into one tensor, 
that shown in the right-hand side of Fig. 2. This tensor has 

 slices, which correspond to the types 
of the hyperedges of the underlying hypergraph, defined next. 
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Fig. 2  Tensor representation. 
 

To facilitate the discussion, let us describe the dataset used 
in the paper. This dataset was collected from Flickr [21] and 
contains both indoor and outdoor images of popular Greek 
landmarks. More specifically, it consists of  
images, uploaded by  users, who used a vocabulary 
of 2366 tags. The entire Greece was partitioned to 125 cells, 
which are defined in terms of 125 geo-tags. The users were 
participated into 1644 groups. 

The aforementioned entities correspond to the vertices of a 
hypergraph. Various hyperedges were identified in the 
hypergraph, which define the incidence matrix  of the 
hypergraph, shown in Table 1 [2]. As can be seen in Table 1, 
six different sub-matrices, capturing various relations in the 
context of image tag recommendation, can be derived. 
Table 1. Structure of the hypergraph incidence matrix H and its sub-matrices 
for image tag recommendation 

E(1) E(2) E(3) E(4) E(5) E(6) 
UE(1) UE(2) UE(3) UE(4) UE(5) 0 

0 GrE(2) 0 0 0 0 
0 0 0 GeoE(4) 0 0 
0 0 0 0 TaE(5) 0 
0 0 ImE(3) ImE(4) ImE(5) ImE(6) 

 
In particular,  has size  and captures the 
pairwise friendship relations between users.  captures the 
information of users groups. The incidence submatrix  
refers to both users and usergroups and has size . 

 contains a user and an uploaded, representing a user-



image possession relation and has size .  
captures a geo-location relation, contains triplets of images, 
users and geo-locations and has size .  
contains triplets of images, users and tags. Each hyperedge 
represents a tagging relation. Size of   is . 
The weights of the hyperedges  are set equal to one. 

 contains pairs of vertices, which represent two images. 
The weight  is set as the normalized similarity between 
images i and j. Details can be found in [3]. The incidence 
submatrix  has size . 

Each hyperedge set  drives a relationship that yields a 
slice of the user and image tensors denoted by  
and , respectively.  

The first obvious choice for  and 
 exploits the sub-matrices of the incidence matrix 

indicated in Table 1. User tensor is formed as follows: 

  (1) 

 (2) 

 (3) 

 (4) 

 (5) 

And image tensor is formed as follows: 

 (6) 

 (7) 

 (8) 

  (9) 

Let  be the total number of vertices and 
 be the total number of hyperedges. The second 

choice is based on the adjacency matrix of the hypergraph, 
 where  is the  diagonal matrix, 

, with  denoting identity matrices of 
compatible dimensions and  with  
made up of the elements in the main diagonal of .  is a 
symmetric matrix. Its upper triangular part can be partitioned 
as follows:  

  (10) 

Then,  and 
. 

The 3rd choice employs the Laplacian matrix of the 
hypergraph, , 

where   is the  hyperedge degree 
matrix.   admits the same structure with the adjacency matrix. 
Accordingly,  and 

. 

B. Tensor decompositions 
Let , denote the tensor created. Four 

decompositions were applied to , that are described next.  

The HOSVD of  allows us to estimate its n- ranks [22],  
[23], yielding: 

  (11) 

where  and  are 
orthogonal matrices. Clearly,  equal   or  
and  for the three tensors created, respectively. 
The  can be found by: 

  (12) 

The CP decomposes  into a sum of rank-one tensors, 
where each rank-one tensor is an outer product of three vectors 
[24], [25], [26]: 

   

  (13) 

where ,  and . 
A common approach to fitting a CP decomposition is to use an 
alternating least-squares (ALS) algorithm. The algorithm 
solves the optimization problem: 
     (14) 

for  and , where  denotes the 
Frobenious norm of a tensor. 

The NTF is the natural generalization of non-negative 
matrix factorization (NMF) to tensors [27], [28]. It 
decomposes: 

  (15) 

where . The NTF model solves the minimization 
problem: 

 
  (16) 

subject to the constraint that . 

The TD is a higher order generalization of the principal 
component analysis. It differs from the CP decomposition, 
since the factorization provides a core tensor multiplied by a 
matrix along each dimension and the factor matrices have 
different dimensions [29], [30]. The Tucker decomposition of 
tensor  is given by: 

 (17) 

where  and .  is the core tensor 
and determines the connections between the decomposed 
matrices: 



 
 ,  (18) 

where ,  and . 

C. Tag recommendation 
As we can see in Fig. 1, methodology includes training and 

testing of the algorithm.  A training tensor is created by 
preserving 70% of the tagging relationships across all images. 
Images whose tags were omitted on purpose are referred to as 
test images next. During the training procedure, for each tag of 
interest, we detect all images that contain this tag. 
Subsequently, the centroids  and   are 
computed by using the rows of the matrices  and , 
which are associated to the training images containing this tag 
and averaging columnwise. In the last step, the similarity 
between the test image and the centroids associated to the tag 
under discussion is given by the corresponding element of the 
score vector [5]  which is 
parameterized by the tags.  By ranking the similarities across 
all tags, we propose the top ranking tags to annotate any test 
image.                           

 

IV. EXPERIMENTAL RESULTS 
The assessment of the proposed image tagging 

methodoology is detailed next. Image tagging is judged with 
respect of the recall-precision curves. Precision is defined as 
the number of correctly recommended tags divided by the 
number of total recommended tags. Recall is defined as the 
number of correctly recommended tags divided by the number 
of total tags the user has actually set.  

The goal of the assessment is three-fold. First, the various 
tensor decompositions are assessed with respect to the recall-
precision curves for image tagging. The decompositions are 
applied to the three tensors described in Section 2. Secondly, 
the most appropriate methods to compute the tensor slices is 
identified within the image tagging framework.  Finally, we 
assess the impact of the user and image tensors separately. 

A. Image tagging using different tensor decompositions 
For CP decomposition, , so the factorized matrices 

have dimensions , where .  The recall 
precision curves for the various decompositions are plotted in 
Fig. 3. It is seen that the HOSVD outperform the other 
decompositions, when it is applied to the tensor whose slices 
are based on hypergraph incidence sub-matrices.  

 

 
Fig. 3.  Averaged Recall-Precision curves for different decompositions 
applied to the tensor whose slices are based on the incidence matrices.   

HOSVD is found to outperform the other decompositions, 
when the tensors have slices that are created by exploiting the 
adjacency matrices (Fig. 4) or the affinity matrices (Fig. 5).  

    
Fig. 4.  Averaged Recall-Precision curves for different decompositions 
applied to the tensor whose slices are based on the adjacency matrices.  

 
Fig. 5. Averaged Recall-Precision curves for different decompositions applied 
to the tensor whose slices are  based on the affinity matrices.   

B. Tag recommendation in user tensor and image tensor 
using different types of matrices 
The recall-precision curves, when the HOSVD is applied to 

tensors whose slices are based on the incidence, adjacency, and 
affinity matrices, are overlaid in Fig. 6. The differences are 
marginal. 

 
Fig. 6.  Averaged Recall-Precision curves applying the HOSVD to tensors 
based on incidence, adjacency, and affinity matrices.   
 

Next, we assess image tagging, when the HOSVD is 
applied to the user tensor and the image tensor, separately. 
These tensors are built by slices based on either the incidence, 
the adjacency or the affinity matrices.  

 
Fig. 7.  Averaged Recall-Precision curves applying the HOSVD to user 
tensors based on incidence, adjacency, and affinity matrices.   
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The averaged recall-precision curves are plotted in Fig. 7 
and Fig. 8, respectively. In both cases, when the tensors are 
built using the incidence matrices, the performance is the best. 

 
Fig. 8.  Averaged Recall-Precision curves applying the HOSVD to image 
tensors based on incidence, adjacency, and affinity matrices.   

C. Image tagging using different tensors 
In Fig. 9, the top performing curves in Fig. 6, Fig. 7 and 

Fig. 8 are overlaid. It is seen that the full tensor, which 
combines both the user and the image tensors yields the best 
results. 

 
Fig. 9.  Averaged Recall-Precision curves of user tensor, image tensor, and the 
full tensor, whose slices are based on the incidence matrices, and decomposed 
by the HOSVD. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we have proposed a new tensor structure that 

grasps both user and image relations. It has been demonstrated 
that when the HOSVD is applied to this tensor, the best 
averaged recall-precision curve is obtained for image tagging. 
The most descriptive tensor has been the one whose slices are 
based on the hypergraph incidence sub-matrices. The proposed 
method can accommodate tagging for any kind of multimedia. 
Future research may be focused on applying robust low-rank 
decomposition to the full tensor.  
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