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Abstract—In this paper, we describe a method for combined
metric learning and classification, that is based on logistic dis-
crimination for the determination of a low-dimensional feature
space of increased discrimination power. An iterating optimiza-
tion process is applied to this end, where the probability of
correct classification rate is increased at each optimization step.
Extensions of the method that allow richer class representations
and non-linear feature space determination and classification
are also described. The described optimization schemes are
solved by following (stochastic or mini-batch) gradient descent
optimization, which is well suited for large-scale learning
problems.
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I. INTRODUCTION

Metric learning approaches have been widely adopted in
many Computer Vision tasks, including image and action
classification [1], [2], [3], [4], [5]. Among them, the Nearest
Class Centroid (NCC) classification scheme has been widely
adopted due to its simplicity and low computational and
storage cost in both the training and the test phases. In
addition, it has been recently shown that the in Big Data
applications the performance of the NCC classifier, when
combined with a metric learning approach, is competitive
to that of more sophisticated classification schemes, like
Support Vector Machine (SVM)-based classifier, while at
the same time its training process is much more efficient
[3]. Roughly, the idea of metric learning approaches is the
determination of a data projection process to a feature space
of increased discrimination power, where simple classifica-
tion schemes can be exploited.

Metric learning approaches include LDA and its variances
[1], [2], LESS [6], Taxonomy Embedding [7], the Sift-
bag kernel [8], nearest class centroid classifier based on
Logistic Regression [3] and sample-to-class metric learning
[9]. LDA determines an optimal discriminant subspace by
maximizing the between-class to within-class scatter ratio
assuming unimodal class probability distributions having the
same covariance structure and employing the mean class
vectors for classes representation. The LESS model [6], is
used to learn a diagonal scaling matrix for the modification
of the Euclidean distance by scaling the data dimensions
and includes an l1 penalty term in order to perform feature
selection. Taxonomy Embedding [7] exploits a hierarchical
cost function in order to map the samples to a lower

dimensional feature space where each class is represented
by the class mean vector. The Sift-bag kernel [8] determines
a lower dimensional feature space that is orthogonal to the
subspace with the maximal within-class variance, which is
evaluated by employing the class mean vectors. The nearest
class centroid classifier of [3] employs logistic regression
for the determination of a Mahalanobis metric using the
class mean vectors and is closely related to our work.
Finally, the sample-to-class metric learning [9], learns a
Mahalanobis metric by employing a Naive-Bayes Nearest
Neighbor (NN) approach and, thus, requires the storage of
all training samples.

In this paper, we describe a metric learning algorithm
based on multi-class logistic discrimination, where a sample
is enforced to be closer to its class representation than to
any other class representation in the projection space. The
algorithm determines both the optimal projection matrix and
the optimal class representation that can be, subsequently,
used for classification. A learning process that is based on
(stochastic or mini-batch) gradient descent optimization is
applied, where updates of the projection matrix and the class
representation are performed iteratively. Such a learning
process is well-suited for large-scale learning problems
[3]. In order to distinguish our approach from the NCC
classifier, it is referred to as the Nearest Class Vector (NCV)
classifier hereafter. In order to overcome the unimodality
assumption that is inherently set by all the NCC, including
NCV, classifiers, we describe an extension, namely Nearest
Subclass Vector (NSV) classifier, which exploits multiple
representations per class. Finally, since kernel methods have
been found to be very effective for the classification of
human actions [10], [11], [12], we describe an extension
of both the NCV and the NSV classification schemes that
is able to determine an optimal data projection and optimal
class representations in arbitrary-dimensional Hilbert spaces
[13].

Compared to the NCC classifier, NCV has the advantage
that, by optimizing the adopted criterion with respect to
the data projection and the class representation(s), increased
class discrimination in the projection space can be achieved.
Compared with metric learning approaches exploiting NN-
based classification schemes, NCV requires the storage of
only few class vectors (the representative ones) and, thus,
has lower computation and storage costs in the test phase.



II. NCV-BASED CLASSIFICATION

The NCV classifier assigns a sample xi ∈ RD to the class
c∗ ∈ {1, . . . , C} of the closest class vector, i.e.:

c∗ = argmin
c

d(xi,µc), (1)

where µc ∈ RD is the representation of class c and
d(xi,µc) = (xi − µc)

TM(xi − µc) is the (squared)
Mahalanobis distance between xi and µc in RD. By setting
M = WTW, where W ∈ Rd×D, d(xi,µc) is given by:

dW(xi,µc) = (xi − µc)
TWTW(xi − µc)

= ∥Wxi −Wµc∥22. (2)

In the case where d < D, equation (2) is equivalent to
calculating the (squared) Euclidean distance of the image of
xi and µc in Rd, i.e., x̃i = Wxi and µ̃c = Wµc. That is,
W can be considered as a projection matrix mapping the
data in a d-dimensional feature space, where classification
is performed by using the minimal Euclidean distance from
the class vectors µc, c = 1, . . . , C.

NCV classifier exploits a probabilistic model based on
multi-class logistic regression. The probability of observing
class c given a vector xi is defined by:

p(c|xi) =
e−

1
2dW(xi,µc)∑C

l=1 e
− 1

2dW(xi,µl)
. (3)

The optimal parameters {W∗,µ∗
c}, c = 1, . . . , C are calcu-

lated by exploiting a training data set formed by N vectors
xi ∈ RD followed by the corresponding class labels yi.
{W∗,µ∗

c}, c = 1, . . . , C are defined as those maximizing
the mean log-likelihood of all the N training samples:

J (W,µc) =
1

N

N∑
i=1

ln p(yi|xi). (4)

In the case where the distribution of training samples is not
representative of the real class distributions, their contribu-
tion to J calculation can be weighted.
J is minimized with respect to both W and µc by

applying an Expectation Maximization-like iterative opti-
mization process. That is, for a given set of class vectors
µc,t calculated at iteration t, the data projection matrix is
updated by following the gradient of J with respect to W,
i.e. Wt+1 = Wt + ηW∇WJ . By using Wt+1 the class
vectors are, subsequently, updated by following the gradient
of J with respect to µc, i.e., µc,t+1 = µc,t + ηµ∇µc

J .
ηW and ηµ are the update rate parameters used to adapt W
and µc,t, respectively. The derivatives of J with respect to
W and µc are given by:

∇WJ =
1

N

N,C∑
i,c=1

(
p(c|xi)− αc

i

)
Wqc

iq
c T
i , (5)

∇µc
J =

1

N

N∑
i=1

αc
i

(
1− p(c|xi)

)
WTWqc

i , (6)

where qc
i = µc − xi and αc

i is an index denoting if xi

belongs to class c, i.e., αc
i = 1 if yi = c and αc

i = 0 oth-
erwise. The above described iterative optimization scheme
is performed until (Jt+1 − Jt)/Jt < ϵ, where ϵ is a small
positive value (equal to 10−8 in our experiments). The class
representations are initialized to the class mean vectors, i.e.,
µc,1 = mc, c = 1, . . . , C, where mc =

1
Nc

∑
i:yi=c xi.

In the case where the classes forming the classification
problem consist of multiple subclasses Cc, c = 1, . . . , C,
each represented by a set of class vectors µcj , j = 1, . . . , Cc,
the probability of observing class c given a vector xi is given
by:

p(c|xi) =

Cc∑
j=1

p(cj |xi) (7)

p(cj |xi) =
e−

1
2dW(xi,µcj)∑C

l=1

∑Cl

k=1 e
− 1

2dW(xi,µlk)
. (8)

{W∗,µ∗
cj}, c = 1, . . . , C, j = 1, . . . , Cc are calculated by

applying the above-described iterative optimization process
using the following gradients of J with respect to W and
µcj :

∇WJ =
1

N

N,C,Cc∑
i,c,j=1

(
p(cj |xi)− αc

iβ
cj
i

)
Wqc

iq
cj T
i , (9)

∇µcj
J =

1

N

N∑
i=1

αc
iβ

cj
i

(
1− p(cj |xi)

)
WTWqcj

i , (10)

where qcj
i = µcj − xi and βcj

i =
p(cj |xi)∑Cc
l=1 p(cl|xi)

. That
is, each training sample xi contributes to the adaptation
of µcj according to its membership value βcj

i . Since the
subclasses are not a priori known, the subclass vectors µcj

are initialized by applying a clustering technique (e.g. K-
Means) on the training samples xi belonging to class c.

In order to perform nonlinear classification, the input
space RD is mapped to a feature space F of arbitrary
dimensions (usually having the structure of a Hilbert space
[13]). NCV-based classification is subsequently applied in
F , leading to nonlinear classification in the input space RD.
Let us denote by ϕ : xi ∈ RD → ϕ(xi) ∈ F a nonlinear
mapping from RD to F . The application of NCV in F leads
to the calculation of a data projection matrix Wϕ ∈ Rd×|F|

and a set of class vectors µϕ
c ∈ R|F|, c = 1, . . . , C. In this

case, the adopted distance function used for the calculation
of the conditional class probabilities is given by:

dWϕ

(
ϕ(xi),µ

ϕ
c

)
= ∥Wϕϕ(xi)−Wϕµ

ϕ
c ∥22. (11)

However, since Wϕ is a matrix of arbitrary (even infinite)
dimensions, the distance in (11) cannot be directly calcu-
lated.



In order to proceed, we express Wϕ and µϕ
c as lin-

ear combinations of the training vectors (represented in
F) [13], i.e. Wϕ = (ΦA)T and µϕ

c = Φbc, where
Φ = [ϕ(x1), . . . , ϕ(xN )] and A, bc are a matrix and a
vector containing the reconstruction weights for Wϕ and
µϕ

c respectively, Equation (11) can now be written as:

dA

(
ϕ(xi),µ

ϕ
c

)
= ∥ATΦTϕ(xi)−ATΦTµϕ

c ∥22
= ∥ATKi −ATKbc∥22, (12)

where K is the kernel matrix, having elements equal to kij =
ϕ(xi)

Tϕ(xj), i, j = 1, . . . , N , and Ki is the i-th column
of K, having elements equal to kji = ϕ(xj)

Tϕ(xi), j =
1, . . . , N .

By observing Equations (2),(3),(4) and (12), it can be
seen that the problem to be solved has been transformed
to the determination of the reconstruction weights A∗ and
b∗
c for optimal non-linear data projection and optimal class

representation, respectively. In this case, the gradient of J
with respect to A is given by:

∇AJ =
1

N

N,C∑
i,c=1

(
p(c|ϕ(xi))− αc

i

)
K(zciz

c T
i )KA, (13)

while the gradient of J with respect to bc is given by:

∇bcJ =
1

N

N∑
i=1

αc
i

(
1− p(c|ϕ(xi))

)
KAATKzci . (14)

zci = bc − 1i, where 1i is a vector having all its elements
equal to zero, except of the i-th element, which is equal to
one.

By using the same analysis for the case of multimodal
classes, A and bcj are updated by using the following
gradients:

∇AJ =
1

N

N,C,Cc∑
i,c,j=1

(
p(cj |ϕ(xi))− αc

iβ
cj
i

)
K(zcji zcj T

i )KA,

(15)

∇bcjJ =
1

N

N∑
i=1

αc
iβ

cj
i

(
1− p(cj |ϕ(xi))

)
KAATKzcji .

(16)
zcji = bcj − 1i and βcj

i =
p(cj |ϕ(xi))∑Cj
l=1 p(cl|ϕ(xi))

. That is, each

training sample xi contributes to the adaptation of bcj

according to its membership value βcj
i , evaluated on F .

In the above, in the case where each class is represented
by one class vector, bc is initialized by setting all its
elements equal to zero, expect of the elements corresponding
to the training samples belonging to class c which are set
equal to 1/Nc, where Nc is the number of training samples
belonging to class c. That is, each class representation is
initialized to the class mean vector in F . In the case of
multiple class representations per class, bcj are initialized by
applying clustering on the training data belonging to class c.

However, in this case clustering should be performed on the
training data representations in F , e.g. by applying kernel
K-Means [14], by using the kernel matrix of the training
samples belonging to each class separately.

III. EXPERIMENTS

We have employed three publicly available human action
recognition data sets, namely the Hollywood2, the Olympic
Sports and the ASLAN data sets. As baseline approaches,
we use the state-of-the-art methods proposed in [15], [16]:
on the ASLAN data set we employ a set of 12 similarity
values calculated for histogram similarity measure between
pairs of videos, represented by using the Bag of Words
(BoW) model for HOG, HOF and HNF descriptors evaluated
on STIP video locations [17]. This video pair similarity
representation is employed for classification using a linear
Support Vector Machine (SVM) classifier. We employ this
baseline to evaluate the performance of the linear version of
the NCV classifier. For the remaining data sets we employ
the Bag of Words (BoW)-based video representation by
using HOG, HOF, MBH and Trajectory descriptors evaluated
on the trajectories of densely sampled interest points [15].
Classification is performed by employing a kernel SVM
classifier and the χ2 kernel. We employ this baseline to
evaluate the performance of the kernel version of the NCV
and NSV classification schemes.

In our experiments we have used an adaptive optimization
process where ηW, ηµ are dynamically determined by
following a linear search strategy. That is, in each iteration
of the optimization process the criterion J is evaluated by
using ηW,0 = 0.1 (or ηµ,0 = 0.1). In the case where
Jt+1 > Jt, the criterion J is evaluated by using an update
rate parameter equal to ηW,n+1 = 2ηW,n (or ηµ,n+1 =
2ηµ,n). This process is followed until Jt+1 < Jt and the
value providing the maximal increase in J is employed. In
the case where, by using an update rate parameter equal
to ηW,0 = 0.1 (or ηµ,0 = 0.1), Jt+1 < Jt, the criterion
J is evaluated by using an update rate parameter equal to
ηW,n+1 = ηW,n/2 (or ηµ,n+1 = ηµ,n/2). This process
is followed until Jt+1 > Jt and the value increasing the
criterion J is employed. We evaluate J after introducing
all the training samples for the adaptation of W, µc,t.
However, (5,6) can be also employed by stochastic gradient
ascent algorithms for the adoption of the NCV in large-scale
classification problems [4]. For the initialization of the data
projection matrices W and A we use random projections
[18].

A. Data sets

The Action Similarity Labeling (ASLAN) data set [16]
consists of thousands of videos collected from the web, in
over 400 complex action classes. A “same/not-same” bench-
mark is provided, which addresses the action recognition
problem as a video pair similarity problem. Example video



frames of the data set are illustrated in Figure 1. We use the
standard partitioning provided by the database. The database
consists of ten splits of video pairs, each containing 300
pairs of same actions and 300 pairs of not-same actions.
The splits contain mutually exclusive action classes. That
is, action classes appearing in one split do not appear in any
other split. Performance is evaluated by applying the ten-fold
cross-validation procedure. In each fold, nine of the splits are
used to train the algorithms and performance is measured on
the remaining one. An experiment consists of ten folds, one
for each test split, and performance is calculated by using
the mean accuracy and the standard error of the mean (SE)
over all folds.

The Hollywood2 data set [19] consists of 1707 videos
depicting 12 actions. It has been collected from 69 different
Hollywood movies. The actions appearing in the data set are:
answering the phone, driving car, eating, fighting, getting out
of car, hand shaking, hugging, kissing, running, sitting down,
sitting up, and standing up. Example video frames of the data
set are illustrated in Figure 2. We use the standard training-
test split provided by the database (823 videos are used
for training and performance is measured in the remaining
884 videos). Training and test videos come from different
movies. The performance is evaluated by computing the
average precision (AP) for each action class and reporting
the mean AP over all classes (mAP), as suggested in [19].
This is due to the fact that some videos of the data set depict
multiple actions.

The Olympic Sports data set [20] consists of 783 videos
depicting athletes practicing 16 sports, which have been
collected from YouTube and annotated using Amazon Me-
chanical Turk. The actions appearing in the data set are:
high jump, long jump, triple jump, pole vault, basketball
lay-up, bowling, tennis serve, platform, discus, hammer,
javelin, shot put, springboard, snatch, clean-jerk and vault.
Example video frames of the data set are illustrated in Figure
3. We use the standard training-test split provided by the
database (649 videos are used for training and performance
is measured in the remaining 134 videos). The performance
is evaluated by computing the mean Average Precision
(mAP) over all classes, as suggested in [20].

B. Results

The mean accuracy and the standard error values obtained
by applying the NCV classifier on the ASLAN data set are
illustrated in Table I. In this Table we also provide the mean
accuracy and standard error values obtained by applying
classification using linear SVM, NCC [3], LDA and the
method in [21] that determines the optimal class vectors for
the LDA criterion (referred to as RCVLDA). It can be seen
that the NCV classifier outperforms LDA in all the cases,
while SVM outperforms both LDA and NCC in all cases.
The determination of the optimal class representation for
the LDA criterion leads to an increase of the performance of

Figure 1. Video frames of the ASLAN data set.

Figure 2. Video frames of the Hollywood2 data set.

LDA. Specifically, RCVLDA outperforms LDA and NCC in
all the cases, while it outperforms SVM in three out of four
cases. Finally, the NCV algorithm outperforms SVM, LDA
and NCC in all cases, while it outperforms RCVLDA in
three out of four cases. Overall, the NCV classifier provides
the best performance, equal to 61.4% (for d = 5), by
using all the similarity values of the database. By using 10
subclasses per class, the NCV classifier further increases the
performance to 61.66%.

The classification rates obtained by applying the kernel
version of the NCV classifier on the Olympic Sports data set

Figure 3. Video frames of the Olympic Sports data set.



Table I
PERFORMANCE (ACCURACY ± SE) ON THE ASLAN DATA SET.

HOG HOF HNF ALL
SVM 57.78 ± 0.82 % 56.68 ± 0.56 % 59.47 ± 0.66 % 60.88 ± 0.77 %
LDA 50.33 ± 0.38 % 50.28 ± 0.27 % 49.82 ± 0.31 % 51.20 ± 0.43 %
NCC 56.83 ± 0.98 % 55.83 ± 0.73 % 57.83 ± 0.93 % 60.08 ± 0.92 %
RCVLDA 59.70 ± 0.91 % 56.93 ± 0.63 % 59.17 ± 0.72 % 60.95 ± 0.81 %

NCV 59.95 ± 0.6 % 56.58 ± 0.81 % 60.08 ± 0.68 % 61.4 ± 0.82 %

Table II
CLASSIFICATION RATES ON THE OLYMPIC SPORTS DATA SET FOR

DIFFERENT TARGET DIMENSIONS d.

50 100 200 300 400
57.46 % 58.2 % 58.96 % 61.94 % 61.94 %

for different dimensions d are illustrated in Table II. In this
Table, we also provide the mean classification rates obtained
by applying kernel SVM-based classification and Kernel
Discriminant Analysis (KDA) [22] on the Olympic Sports
data set. The NCV classifier outperforms the other two
classification schemes. By using two subclasses per action
class, the NSV classifier outperformed NCV, providing a
classification rate equal to 63.43%.

Table III
MEAN CLASSIFICATION RATES ON THE OLYMPIC SPORTS DATA SET.

SVM KDA NCV
61.19 % 60.44 % 61.94 %

The mean average precision values obtained by applying
the kernel version of the NCV classifier on the Olympic
Sports and the Hollywood2 data sets are illustrated in Table
IV. In this Table, we also provide the mean average precision
values obtained by applying kernel SVM and KDA on the
two data sets. As can be seen, NCV outperformed both SVM
and KDA in both data sets providing mAP equal to 78.85%
and 58.85% for the Olympic Sports and the Hollywood2 data
sets, respectively. Overall, the distance-based classification
from optimized class representation(s) provides comparable
(or even better) performance with that other classifiers, like
KDA-based and SVM-based classification schemes.

IV. CONCLUSION

In this paper we described a metric learning method
for distance-based classification. Learning is achieved by
maximizing the log-likelihood of correct class prediction,
which is calculated in a low-dimensional feature space
of increased discrimination power by using an optimized

Table IV
PERFORMANCE (MAP) ON THE OLYMPIC SPORTS AND HOLLYWOOD2

DATA SETS.

SVM KDA NCV
Olympic Sports 74.4 % 75.3 % 76.85 %
Hollywood2 58.23 % 58.31 % 58.85 %

class representation. Extensions that exploit multiple rep-
resentations per class, as well as that operate in arbitrary-
dimensional Hilbert spaces for non-linear data projection and
classification have also been described.
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