
KERNEL MATRIX TRIMMING FOR IMPROVED KERNEL K-MEANS CLUSTERING

Nikolaos Tsapanos, Anastasios Tefas, Nikolaos Nikolaidis and Ioannis Pitas

Aristotle University of Thessaloniki

ABSTRACT

The Kernel k-Means algorithm for clustering extends the
classic k-Means clustering algorithm. It uses the kernel trick
to implicitly calculate distances on a higher dimensional
space, thus overcoming the classic algorithm’s inability to
handle data that are not linearly separable. Given a set of
n elements to cluster, the n × n kernel matrix is calculated,
which contains the dot products in the higher dimensional
space of every possible combination of two elements. This
matrix is then referenced to calculate the distance between
an element and a cluster center, as per classic k-Means. In
this paper, we propose a novel algorithm for zeroing elements
of the kernel matrix, thus trimming the matrix, which re-
sults in reduced memory complexity and improved clustering
performance.

1. INTRODUCTION

The k-Means algorithm [1] is one of the earliest algorithms
for clustering data [2]. It is very simple, basic, yet popular
and widely used. As its name implies, it involves k cluster
centers. When applied to a set of n elements ai, i = 1 . . . n,
each represented by a vector in the feature space, it labels
each element with the cluster center it is eventually assigned
to. In its basic form, it is an iterative process with two steps:
assigning the elements to the closest cluster center and then
updating each cluster center to the mean of the elements as-
signed to it in the previous step. This continues until there are
no changes, or a set number of iterations has been reached.

A limitation of k-Means is that the surfaces separating the
clusters can only be linear hyperplanes in the dimensionality
of the elements. This means that its performance on more
challenging clustering tasks can be rather poor. In order to
overcome this limitation, the classic algorithm has been ex-
tended into Kernel k-Means [3]. The basic idea behind kernel
approaches is to project the data into a higher, or even infi-
nite dimensional space. It is possible for a linear separator in
that space to have a non-linear projection back in the original
space, thus solving the issue. The kernel trick [4] allows us

The research leading to these results has received funding from the Eu-
ropean Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement number 316564 (IMPART). This publication reflects only the au-
thors views. The European Union is not liable for any use that may be made
of the information contained therein.

to circumvent the actual projection to the higher dimensional
space. The trick involves using a kernel function to implicitly
calculate the dot products of vectors in the kernel space us-
ing the feature space vectors. If xi, xj are the feature vectors
representing elements ai, aj and φ(xi), φ(xi) are the projec-
tions of the corresponding feature vectors on the kernel space,
then κ(xi,xj) = φ(xi)

Tφ(xj) is a kernel function. Different
kernel functions correspond to different projections. Finally,
distance in the kernel space can be measured using dot prod-
ucts.

In order to have quick, repeated access to the dot prod-
ucts without calculating the kernel function every time, the
function is calculated once for every possible combination of
two elements. The results are stored in a n × n matrix K
called the kernel matrix, where Kij = κ(xi,xj). Interest-
ingly, it has been proven that Kernel k-Means, Spectral Clus-
tering and Normalized Graph Cuts are, under the right condi-
tions, mathematically equivalent tasks [5]. The kernel matrix
can, therefore, be viewed as the weighted adjacency matrix of
a full graph, whose nodes are the elements ai and whose edge
weights are the kernel function values.

The remaining issue with Kernel k-Means is that the ker-
nel matrix grows quadratically with respect to the number of
elements n. With the advances in data generation, collection
and storage, modern clustering datasets are constantly grow-
ing bigger and applying Kernel k-Means becomes problem-
atic. One way to deal with large amounts of data, Approxi-
mate Kernel k-Means [6], is to restrict the cluster centers from
the entire kernel space spanned from all elements to a smaller
kernel subspace spanned by randomly sampled elements. An-
other approach is to work on them-nearest neighbor graph in-
stead of the full graph [7]. This involves discarding all edges
except the m strongest edges for every element from the ad-
jacency matrix, or, in our case, from the kernel matrix.

In this paper, we propose a novel kernel matrix trimming
algorithm that reduces the size of the clustering problem,
while also improving clustering performance. We consider
the kernel matrix edges that connect elements of the same
cluster to be ”good” and edges connecting elements of differ-
ent clusters to be ”bad”. We aim to eliminate the ”bad” edges,
while retaining as many ”good” edges as possible. This is
difficult to do using the m-nearest neighbor graph mentioned
above, since it requires ground truth knowledge or parameter
tuning and a static value for m may not be suitable, if the

dataset contains both larger and smaller clusters. In our pro-
posed algorithm, it is possible to retain a different number of
edges for different elements. This is achieved by estimating
the size of the cluster that each element belongs to. The clus-
ter size estimation is not performed on an element by element
basis, as all the elements contribute, when making a decision
that one or more clusters of a certain size exist.

The paper is organized as follows: section 2 introduces
the basics of the Kernel k-Means algorithm, section 3 details
our novel algorithm for trimming the kernel matrix, section
4 presents the experimental evaluation of the proposed Ker-
nel k-Means on trimmed matrix approach and section 5 con-
cludes the paper.

2. KERNEL K-MEANS

In this section we will provide a small introduction to the Ker-
nel k-Means algorithm [8]. Let there be k clusters πc, c =
1 . . . k and elements ai, i = 1 . . . n. Each cluster πc has a
center in the higher dimensional space mc and every element
ai has a feature vector xi, whose projection in the higher di-
mensional space is φ(xi). Assuming that there is an assign-
ment of every element to a cluster, then cluster πc’s center is
computed as

mc =

∑
aj∈πc

φ(xj)

|πc|
(1)

where |πc| is the number of elements assigned to πc. The
squared distance D(xi,mc) = ||φ(xi)−mc||2 between vec-
tor xi and mc can be written as

D(xi,mc) = φ(xi)
Tφ(xi)− 2φ(xi)

Tmc +mT
c mc (2)

substituting mc from (1) into (2) we get

D(xi,mc) = φ(xi)
Tφ(xi)− 2

∑
aj∈πc

φ(xi)
Tφ(xj)

|πc|
+

+

∑
aj∈πx

∑
al∈πx

φ(xj)
Tφ(xl)

|πc|2

we can calculate the dot products using the kernel function

D(xi,mc) = κ(xi,xi)− 2

∑
aj∈πc

κ(xi,xj)

|πc|
+

+

∑
aj∈πx

∑
al∈πx

κ(xj ,xl)

|πc|2

since the kernel function results are stored in the kernel ma-
trix, κ(xi,xj) = Kij , we finally obtain

D(xi,mc) = Kii − 2

∑
aj∈πc

Kij

|πc|
+

∑
aj∈πc

∑
al∈πc

Kjl

|πc|2
.

(3)

In order to simplify the notation, we will use the follow-
ing symbols: nc = |πc|, S(i)

c =
∑
aj∈πc

Kij , Cc =∑
aj∈πc

∑
al∈πc

Kjl. Thus (3) becomes

D(xi,mc) = Kii − 2
S
(i)
c

nc
+
Cc
n2c

(4)

After measuring the distance of data point xi to each of
the k clusters centers, the data point is reassigned to the clus-
ter πc with the minimum distanceD(xi,mc). This is an itera-
tive process, in which the distances are measured and the clus-
ter assignments are updated, until there are no more changes
in the assignment, or a maximum number of iterations has
been reached. The initial assignment can either be manual, or
completely random.

3. TRIMMING ALGORITHM

In general, the aim of the trimming algorithm is to remove the
”bad” edges from the kernel matrix. It attempts to accomplish
this by determining the size w of the cluster that each element
belongs to through a voting system and then only retaining
edges the strongest w edges from the corresponding kernel
matrix row. Each element casts votes on the various candidate
sizes for itself. The votes for each cluster size are summed up
for every element. Each size is then assigned a score by a
suitability function. The suitability function for cluster size j
essentially measures how close the number of votes for j is to
the nearest integer, non-zero product of j. For example, if the
number of votes for size 50 is 23, then size 50 will not receive
a very good score. If, on the other hand, the number of votes
for size 50 is 148, then this is a good indication that there are
3 clusters of size 50 and the score is accordingly high. The
winning size is the one with the highest score. Every element
that voted for the winning size is determined to belong to a
cluster of that size and its votes are removed. The process
is repeated on the remaining votes, with each size receiving
a new, updated score, until there are no votes left. We will
proceed to describe this process in further detail.

0 10 20 30 40 50 60 70 80 90 100

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Fig. 1. The vote determination process for a single element:
a) the corresponding row values sorted in ascending order,
b) the numerically calculated first derivative of the sorted se-
quence and c) the binary votes.

We begin by sorting each of the n rows of the kernel ma-
trix in ascending order, in a similar fashion to Hartigan’s Dip
Test for unimodality [9]. Let the sorted sequence for element
ai be mapped to a function ri(x). We then numerically cal-
culate the first derivative of ri(x) as:

r′i(x) =

3∑
h=1

ri(x+ h)− ri(x− h)
2h

.

High values for the first derivative imply that there is a pos-
sible change in mode and, thus, a possible cluster size. Let
v(i) be the binary vector containing the cluster size votes,
v
(i)
j = 1, if r′i(j) is among the 10% of highest values of r′i(x),

and v(i)j = 0 otherwise. The determination of ai’s cluster size
votes is illustarted in Figure 1.

We add all the voting vectors for every element into vector
v∗ =

∑
v(i). Thus, v∗j is the number of votes for cluster

size j. We calculate the score vector s, whose elements are
obtained from the elements of v∗ through this function:

sj = (1− 1

j
)max(e−|

v∗j−b
v∗j
j
cj

j |, e−|
v∗j−d

v∗j
j
ej

j |) (5)

where |v
∗
j−b

v∗j
j c

j | is the normalized distance of v∗j to the clos-

est integer product of j from below and |v
∗
j−d

v∗j
j e

j |, respec-
tively, from above. Both of these distances are passed through
an exponential activation function and the best result is re-
tained. Finally, the score is weighed by 1 − 1

j . This repre-
sents the probability that the score is not the result of random
chance. Since there are only j possible values for the un-
weighed score of cluster size j, we assume that there is a 1

j
probability that this happened by random chance. Therefore,
1− 1

j is the probability that the score is valid. This generally
favors larger clusters and prevents the process from degen-
erating into finding a very big number of very small cluster
sizes. The winning size w = argmaxj(sj) is selected. Every
element ai that voted for w in its v(i) is determined to belong
to a cluster of size w and its v(i) is subtracted from v∗ for the
next iteration. The voting and scoring process is illustarted in
Figure 2.

When there are no more votes, it means that every element
has received an estimate of the size of the cluster it belongs
to. The trimming of the kernel matrix K happens in a row-
wise manner. Suppose that the estimated cluster size for ele-
ment ai is wi. We can now zero every element Kij in the i-th
row of K that is less than the wi-th largest value of the row,
however, since underestimating the cluster size can result in
”good” edges being cut, in practice we use the (wi+0.01n)-th
value, as the cut-off threshold. Let K̂ be the resulting matrix,
after every row of K has been trimmed. Since K̂ may no
longer be symmetric, the final trimmed matrix is obtained as
K∗ = max(K̂, K̂T).

Note that the voting process can be implemented in O(n)
memory and runs in O(n2 log n) time, while subsequent ex-
ecutions of the Kernel k-Means algorithm can run in O(nz)
time and memory, where nz is the number of non-zero ele-
ments of K∗ [10], though note that nz can be O(n2) in the
worst case. Also note that, as a by-product of this process,
we also acquire an estimate for the total number of clusters
and their sizes. After determining the cluster size w for each
element ai, we can trim every edge, except the ones with the
w largest values. Figure 3 shows the results of applying this
process on a sample kernel matrix.

4. EXPERIMENTS

We used the MNIST handwritten digit dataset for our exper-
iments. More specifically, the training set, which contains
60000 images of handwritten digits and the test set, which
contains 10000 images where both used for clustering for a
total of 70000 samples. In accordance with [11] and [6], each
sample image was concatenated into a vector, then each fea-
ture of the vector was divided by 255, thus normalizing every
feature in [0, 1].

The following kernel functions were used: the Neural ker-
nel κ(xi,xj) = tanh(αxTi xj + β), the Polynomial kernel
κ(xi,xj) = (xTi xj + 1)d and the Radial Basis Function
(RBF) kernel κ(xi,xj) = e−γ||xi−xj ||2 . Again, in accor-
dance with [11] and [6], we set α = 0.0045, β = 0.11 and
d = 5. For the RBF kernel, we chose γ = 1. For each
function, the full kernel matrix K was calculated. We then
used our algorithm, as described in Section 3, to obtain the
trimmed kernel matrix K∗ for every function. We run the
Kernel k-Means algorithm 10 times each for all 6 possible
approaches (baseline/proposed,Neural/Polynomial/RBF). We
then used the Normalized Mutual Information (NMI) metric
[12] to measure the similarity between the clustering results
and the ground truth. We also measure the reduction in the
size of the kernel matrix as nz

n2 . The results of this experiment

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

(b)

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (c)

Fig. 2. The voting and scoring process: a) the voting matrix,
where each row represents the votes of the corresponding el-
ement in black, b) the column-wise sum of the voting matrix
c) the results of the scoring function, the winning size is 43.

(a) (b)

Fig. 3. The trimming algorithm applied to a sample kernel
matrix. Black is 1, white is 0, the images have been slightly
manipulated to improve visualization. a) Original kernel ma-
trix. Ground truth is 6 clusters with sizes 43, 19, 10, 9, 6, 6.
b) The trimmed kernel matrix. Estimated cluster number is 6
clusters with sizes 43, 19, 10, 7, 7, 7.

Table 1. Experimental results on the MNIST dataset. The
baseline column refers to using Kernel k-Means on the full
kernel matrix, while the proposed column refers to using Ker-
nel k-Means on the trimmed kernel matrix. The reduction
column lists the ratio of retained edges over initial edges.

Kernel Baseline Proposed Reduction
Neural 0.4982(0.0226) 0.4959(0.0066) 0.0743

Polynomial 0.4945(0.0136) 0.5108(0.0095) 0.0866

RBF 0.4936(0.0136) 0.5687(0.0312) 0.0439

are presented in Table 1, in which NMI values are presented
as mean(standard deviation).

Overviewing the results, we note that the baseline RBF
approach performance (0.4936) is worse than both the base-
line Neural (0.4982) and baseline Polynomial (0.4945) ap-
proaches. Looking at these results, one might think that the
RBF kernel function is not the best choice for this problem.
Furthermore, it appears that the proposed trimming algorithm
hinders the Neural approach (0.4959), but provides enough of
an improvement on the Polynomial approach (0.5108) to be-
come better than the baseline Neural combination. However,
the proposed RBF approach provides the absolute best perfor-
mance (0.5687), with a decent 0, 0705 lead over the second
best approach. Looking at the kernel matrix size reduction,
the proposed RBF approach retained only about 4% of the full
kernel matrix, in order to achieve the best performance, while
the other two proposed approaches used almost double that
(8%). It appears that the RBF kernel suffers most from the
presence of ”bad” edges, but has better properties regarding
the compactness of the clusters than the Neural and Polyno-
mial kernels. Thus, it is able to outperform both, when most
of the ”bad” edges are removed.

In order to study the performance/kernel matrix size re-

duction trade-off, we used the approximate kernel k-means
algorithm on the same MNIST dataset. We randomly sam-
pled 2000, 4000 and 5000 from the Neural matrix rows and
run the experiments 10 times. The NMI performance and cor-
responding size reduction achieved by approximate kernel k-
means can be seen in Table 2, which includes the best perfor-
mance/reduction of our approach for quick reference. As can
be seen, approximate kernel k-means needs about 7% of the
kernel matrix, in order to match the full kernel matrix perfor-
mance (0.4941), while our approach achieves better perfor-
mance (0.5687) with about 4% of the kernel matrix. How-
ever, since our approach requires adjacency lists, in practice
it will require double the amount of memory. Concluding this
comparison, our approach will require about the same mem-
ory space to run and yet provides a significant performance
improvement over approximate kernel k-means.

Table 2. Performance/reduction trade-off for approximate
kernel k-means [6] and our approach.

Method NMI reduction

[6]
0.4898(0.0067) 0.0285
0.4917(0.0079) 0.0571
0.4941(0.0124) 0.0714

proposed 0.5687(0.0162) 0.0439

5. CONCLUSIONS

In this paper, we have presented a novel kernel matrix trim-
ming algorithm, that aims to remove the ”bad” edges, i.e.,
edges connecting elements that belong to different clusters.
Furthermore, we have provided a formalized analysis of the
workings of cluster assignment in kernel space and concluded
that element assignments to a wrong cluster can be attributed
to both the presence of ”bad” edges, as well as differences
in the relative compactness of the clusters’ projection to the
higher dimensional space. Our experimental results support
this conclusion, as the RBF kernel, while being the worst ker-
nel choice by itself, has better projection properties, once the
”bad” edges are reduced. On the contrary, the other two ker-
nels do not benefit as much from such a reduction. As a result,
the combination of the proposed trimming algorithm with the
RBF kernel provides the best clustering performance.

6. REFERENCES

[1] J. B. Macqueen, “Some methods of classification and
analysis of multivariate observations,” in Proceedings of
the Fifth Berkeley Symposium on Mathematical Statis-
tics and Probability, 1967, pp. 281–297.

[2] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data cluster-

ing: a review,” ACM Comput. Surv., vol. 31, no. 3, pp.
264–323, Sept. 1999.

[3] Bernhard Schölkopf, Alexander Smola, and Klaus-
Robert Müller, “Nonlinear component analysis as a ker-
nel eigenvalue problem,” Neural Comput., vol. 10, no.
5, pp. 1299–1319, July 1998.

[4] A. Aizerman, E. M. Braverman, and L. I. Ro-
zoner, “Theoretical foundations of the potential func-
tion method in pattern recognition learning,” Automa-
tion and Remote Control, vol. 25, pp. 821–837, 1964.

[5] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis,
“Kernel k-means: spectral clustering and normalized
cuts,” in Proceedings of the tenth ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, New York, NY, USA, 2004, KDD ’04, pp. 551–
556, ACM.

[6] Radha Chitta, Rong Jin, Timothy C. Havens, and
Anil K. Jain, “Approximate kernel k-means: solution to
large scale kernel clustering.,” in KDD, Chid Apte’, Joy-
deep Ghosh, and Padhraic Smyth, Eds. 2011, pp. 895–
903, ACM.

[7] Ulrike von Luxburg, “A tutorial on spectral clustering,”
Statistics and Computing, vol. 17, no. 4, pp. 395–416,
2007.

[8] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis,
“Weighted graph cuts without eigenvectors a multilevel
approach,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
29, no. 11, pp. 1944–1957, Nov. 2007.

[9] J. A. Hartigan and P. M. Hartigan, “The dip test of uni-
modality,” The Annals of Statistics, p. 7084, 1985.

[10] Inderjit Dhillon, Yuqiang Guan, and Brian Kulis, “A
Unified View of Kernel k-means, Spectral Clustering
and Graph Cuts,” Tech. Rep. TR-04-25, UTCS, July
2004.

[11] Rong Zhang and Alexander I. Rudnicky, “A large scale
clustering scheme for kernel k-means.,” in ICPR (4),
2002, pp. 289–292.

[12] T. O. Kvalseth, “Entropy and correlation: Some com-
ments,” IEEE Transactions on systems, Man and Cy-
bernetics, vol. 17, no. 3, pp. 517–519, 1987.

