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Abstract. Principal Component Analysis and Linear Discriminant Anal-
ysis are of the most known subspace learning techniques. In this paper, a
way for training set enrichment is proposed in order to improve the per-
formance of the subspace learning techniques by exploiting the a-priori
knowledge that many types of data are symmetric. Experiments on ar-
tificial, facial expression recognition, face recognition and object catego-
rization databases denote the robustness of the proposed approach.
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1 Introduction

Everyday, a vast amount of images and videos are available from many sources,
resulting in the need to handle and use this information intelligently by many
systems such as robotics, multimedia retrieval and recognition (face, object, etc).
This means that image processing methods are a key field in computer vision
applications. Many of these methods exploit subspace learning techniques which
have been employed in many computer vision and pattern recognition tasks [1,
2]. Such techniques calculate projection vectors in order to reduce the data di-
mensionality, maintaining the meaningful information and, thus, they can be
employed for dimensionality reduction, data visualization and compression, as
well as as a main preprocessing step in classification and clustering methods.
Some of them are unsupervised, such as Principal Component Analysis (PCA)
[3], Independent Component Analysis [4], Locality Preserving Projections [5]
and Non-negative Matrix Factorization [6]. Another category of SL techniques
is supervised and uses the class label information of data, e.g., Linear Discrim-
inant Analysis (LDA) [7], Discriminant Non-negative Matrix Factorization [8],
Clustering based Discriminant Analysis [9] and Subclass Discriminant Analysis
[10].

The aforementioned techniques do not work well when the available samples
are not truly representative of the corresponding patterns. Our aim is to propose
a training set enrichment approach in order to produce more representative
training sets and, therefore, to improve the performance of subspace learning



2 K. Papachristou et al.

techniques by adding the symmetric version of each sample. This approach is
based on the fact that symmetry is a main characteristic of several data types,
such as faces, objects, etc.

The remainder of this paper is organized as follow. In Section 2, the subspace
learning techniques, namely PCA and LDA, are briefly described. In Section 3,
the proposed approach for improving the robustness of the subspace learning
techniques using the symmetric versions of images are presented. In Section 4,
we present experiments conducted in order to evaluate the proposed approach.
Finally, conclusions are drawn in Section 5.

2 Subspace Learning Techniques

In this section, we provide a brief review of well known subspace learning tech-
niques Principal Component Analysis in subsection 2.1, LDA in subsection 2.2
and their combination in subsection 2.3. In the following, we will consider the set
X = {x1,x2, . . . ,xN} to be the sample images xi ∈ Rm×1 in vectorized form,
while the projection vectors are denoted by w ∈ Rm×1. The total number of
samples in the dataset, the total number of classes and the mean vector of the
entire data set are denoted by N , c and µ, respectively. The initial dimension-
ality of the samples is denoted by m, while the dimensionality of the projection
space is denoted by m′.

2.1 Principal Component Analysis

PCA tries to find projection vectors w that maximize the variance of the pro-
jected samples yi = wTxi, for better representation. If we define the total scatter
matrix ST as:

ST =

N∑
i=1

(xi − µ) (xi − µ)
T
, (1)

the objective of PCA is to find the transformation matrix W = [w1,w2, ...wm′ ]
that maximizes the trace of ST :

J(W) = arg max
W

tr[WTSTW]. (2)

The solution of (2) is given by the solution of following generalized eigenvalue
decomposition problem:

ST ·w = λ ·w (3)

keeping the m′ eigenvectors of ST that correspond to the m′ largest eigenvalues.
We can choose m′ such that the sum of the m′ largest eigenvalues is more than
a percentage P% of the sum of the total eigenvalues.
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2.2 Linear Discriminant Analysis

LDA determines projection vectors w so that the classes of the samples are well
discriminated. For this reason, the between-class scatter matrix:

SLDA
B =

c∑
i=1

(µi − µ) (µi − µ)
T

(4)

and the within-class scatter matrix:

SLDA
W =

c∑
i=1

ni∑
k=1

(
xi
k − µi

) (
xi
k − µi

)T
, (5)

are defined, where xi
k is the k-th sample in the class i and, µi, ni are the mean

vector and the number of samples in class i, respectively.
The objective of LDA is to find the transformation matrix W that maximizes

the ratio of the trace of the between-class scatter to the trace of the within-class
scatter matrix:

J(W) = arg max
W

tr[WTSLDA
B W]

tr[WTSLDA
W W]

. (6)

The solution of (6) is approximated [19] by the following generalized eigen-
value decomposition problem:

SLDA
B ·w = λ · SLDA

W ·w, (7)

by keeping the m′ eigenvectors that correspond to the m′ largest eigenvalues.
Because SLDA

B is the sum of c matrices in (Equation 4) of rank one or less and
only c−1 of these are independent, the maximum number of nonzero eigenvalues
is equal to c− 1. Consequently, the upper bound on m′ is c− 1.

2.3 Principal Component Analysis plus Linear Discriminant
Analysis

LDA is very prone to the “small sample size” problem [1]. This problem occurs
when the number of samples is smaller than the dimensionality of the samples.
As a result, the matrix SLDA

W may become singular, and solving the general-
ized eigenvalue decomposition problem (7) may result to irregular discriminant
projection vectors.

In order to overcome the above problem, an alternative technique has been
proposed [11], which consists of two steps. In the first step, the samples are
projected to a subspace of dimensionality lower than N − l using PCA, where
l denotes the number of classes for LDA technique, so that SLDA

W become non-
singular. In the second step, the matrices SLDA

B and SLDA
W are calculated by

using the data representations in the PCA space. Finally, LDA is applied for the
determination of regular projection vectors.
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3 Proposed Approach

The above mentioned subspace learning techniques are rather sensitive when the
training set consists of a small number of samples, resulting in a bad pattern
learning and generalization. For example, as illustrated in Figure 1(a), the train-
ing set of a face recognition problem may be comprised of frontal and slightly left
pose face images or face images taken with a specific light position (right). This
fact can lead to a poor pattern representation by applying a subspace learning
technique. A possible solution to address this problem is the enrichment of the
training set by adding the symmetric version of each sample based on the sym-
metry property of the face in order to produce a training set which will better
represent a symmetric pattern. Indeed, the application of this way of database
enrichment to the images of Figure 1(a) leads to forming an enriched training
set which represents better the faces of persons, as shown in Figure 1(b). These
image have been inverted with respect to the vertical axis. Similarly, we can ap-
ply a corresponding training set enrichment by inverting the images with respect
to the horizontal axis or to any directional axis.

(a)

(b)

Fig. 1. Training set example consisting of (a) the original samples, and (b) both original
samples and their symmetric versions.

To highlight the effectiveness of the proposed training set enrichment ap-
proach in the subspace learning techniques, we designed two artificial data prob-
lems for PCA and LDA, respectively. Figure 2 illustrates the result of PCA for
a symmetric artificial data problem, where the real symmetric pattern is defined
by an ellipse, while the available samples are represented by crosses. As can be
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seen, the available samples do not correspond to a representative subset of the
pattern. As a result, the PCA projection line, maximizing the samples variance,
is not suitable for the real symmetric pattern. On the contrary, it is obvious that
PCA results to a better projection line when the symmetric versions of samples
are used.
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Fig. 2. PCA projection lines using (a) the original samples, and (b) both original
samples and their symmetric versions.

Correspondingly, we designed an artificial two-class data problem, in which
the available samples of the two classes are represented by crosses and circles,
respectively. As it can be easily observed in Figure 3, LDA is able to find a
projection line, which optimally separates both the available samples and the
real symmetric patterns using the enriched training set compared to using the
available samples only.
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Fig. 3. LDA projection lines using (a) the original samples, and (b) both original
samples and their symmetric versions.
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4 Experiments

In this section, an experimental evaluation of the proposed approach on real-
databases for facial expression recognition, face recognition and object catego-
rization is presented. We conducted two series of experiments. In the first one,
the training and testing set consist of the original images of databases. In the
second one, the original images and their symmetric versions were used to form
the training set, while the testing set consists of the original images. In all the
experiments, we applied a subspace learning technique, namely PCA, LDA and
PCA+LDA, to the training set and the samples are projected into the corre-
sponding subspace. The new dimensionality of PCA has been defined by main-
taining the 99% of the total eigenvalue sum of the training set energy, while in
LDA technique the new dimensionality was c−1, where c is the number of classes.
Finally, the projected samples were classified using the Nearest Centroid (NC),
and k-Nearest Neighbor (kNN) classifiers. kNN was used for k = 1, 3, 5, 7, 9, 11.
In all classifiers, the Euclidean distance measure is adopted. The results of our
experiments on facial expression recognition, face recognition and object cate-
gorization are presented in subsections 4.1, 4.2 and 4.3, respectively.

4.1 Experiments on Facial Expression Recognition

The COHN-KANADE [12] and JAFFE [13] face databases were used in our
experiments for facial expression recognition. Each facial image belongs to one
of the following seven facial expressions: anger, disgust, happiness, fear, sadness,
surprise and neutral. The COHN-KANADE database contains 210 subjects of
age between 18 and 50 years. We used 35 images of each facial expression. The
JAFFE database contains 213 images depicting 10 Japanese female subjects.
3 images per subject of each facial expression were used in our experiments.
All facial images were cropped to include only the subject’s facial region. The
cropped face images were resized to 30 × 40 pixels (where 30 and 40 are the
columns and rows of the image, respectively). In Figure 4, a cropped facial
image for all facial expressions of the COHN-KANADE and JAFFE databases
is shown, respectively.

The application of LDA technique on the above databases encounters com-
putational difficulties due to the “small sample size” problem. To estimate the
recognition accuracy, we used the 5-fold cross validation procedure by dividing
each database into 5 non-overlapping subsets. Each experiment included five
training-test procedures (folds), where in each fold, the techniques were trained
by using 4 subsets and testing was performed on the remaining subset. Recog-
nition accuracy was measured by using the mean classification rate over all five
folds. For the COHN-KANADE experiments, each subset contained 20% of the
facial images for each class based on random selection. For the JAFFE database,
we performed person-independent experiments: each subset contained the entire
set of the facial images from 20% of the persons. Thus, the facial images of each
person were either in the training or in the test set. The results obtained for the
COHN-KANADE and JAFFE databases, are shown in Table 1, where the best
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(h) (i) (j) (k) (l) (m) (n)

Fig. 4. A cropped image for all facial expressions of the Cohn-Kanade (first row) and
JAFFE (second row) databases: (a) neutral, (b) angry, (c) disgusted, (d) feared, (e)
happy, (f) sad, and (g) surprised.

results are shown in bold. As it can be seen, an improvement in the performance
is observed in the majority of the cases after the enrichment with symmetric im-
ages. Thus, such an approach can be used in order to improve the performance
of subspace learning techniques.

Table 1. COHN-KANADE and JAFFE 5-fold cross validation accuracy rates.

COHN-KANADE JAFFE
technique Original Enriched Original Enriched

PCA 33.88 35.10 38.10 40.48
PCA+LDA 68.98 70.61 51.90 50.00

4.2 Experiments on Face Recognition

We used the ORL [14], AR [18, 16] and Extended YALE-B [15, 17] face databases
in our experiments for face recognition. The ORL database contains 400 images
of 40 distinct persons (10 images each). The images were captured at different
times and with different variations (lighting, position). The AR database con-
tains over 4000 color images corresponding to 70 men’s and 56 women’s faces.
The images were taken in frontal position with different facial expressions, illu-
mination conditions and occlusions. Each person contains 26 images capturing
in two recording sessions. The Extended YALE-B database contains images of
38 persons in 9 poses and under 64 illumination conditions. The frontal cropped
images were used only, in this work. All images were resized to 30 × 40 pixels,
in our experiments. Some example facial images from the ORL, the AR and the
Extended YALE-B databases are displayed in Figure 5.

For the above databases, the 20% of images per person were randomly se-
lected for training and the remaining images were used for testing. The direct
application of the LDA technique in all the databases was impossible because
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(a) (b) (c)

Fig. 5. Sample images from the (a) ORL, (b) AR and (c) Extended YALE-B databases.

of the “small sample size” problem. The results obtained for the ORL, AR and
Extended YALE-B databases, are illustrated in Table 2. As can be seen, in all
the cases, a better regocnition accuracy is achieved when training set is enriched
with the symmetric versions of the original images. Therefore, we can conclude
that for symmetric data (such as a human face) the proposed way of enriching
databases achieves better data representation and overcomes the poor represen-
tation using both the original images and their symmetric versions.

Table 2. ORL, AR and Extended YALE-B Accuracy Rates.

ORL AR Extended YALE-B
technique Original Enriched Original Enriched Original Enriched

PCA 81.88 83.75 27.81 31.95 55.06 55.57
PCA+LDA 80.94 85.63 48.86 53.81 81.53 82.77

4.3 Experiments on Object Categorization

In the experiments on object categorization we used the ETH-80 [20] database. It
contains images from eight categories: apple, pear, tomato, cow, horse, dog, cup
and car. For each category there are images of ten different objects. Each object
has been captured by 41 different views. The images were resized to 32 × 32
pixels.

Table 3. ETH-80 5-fold cross validation accuracy rates.

technique Original Enriched

PCA 85.43 85.67
LDA 74.88 81.52
PCA+LDA 85.00 84.58

We evaluated the performance of the proposed techniques using the 5-fold
cross validation procedure. Specifically, images of each object were either in the



Subspace Learning with Enriched Databases Using Symmetry 9

training set or the test set. The results are shown in Table 3. As can be seen,
after the enrichment with symmetric images, an improvement in the performance
is observed (PCA and LDA cases). On the other hand, when PCA is applied
first, the projected samples are not symmetric in PCA space and, therefore, the
symmetric versions of the samples do not affect on the performance of LDA.

5 Conclusions

Subspace Learning techniques have been a useful tool in many applications. In
this paper, we proposed an enrichment approach of the training set by adding
the symmetric versions of the available samples in problems where the patterns
are symmetric, for example facial expression and face recognition ones. The
experiments on relevant databases and artificial data highlight that a major
improvement is achieved when using subspace learning combined with symmetric
enrichment training sets.
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