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Abstract—In this paper we introduce a novel method for
movement recognition in motion capture data. A movement is
regarded as a combination of basic movement patterns, the
so-called dynemes. Initially a K-means variant that takes into
account the periodic nature of angular data is applied on training
data to discover the most discriminative dynemes. Each frame
is then assigned to one of these dynemes and a histogram that
describes the frequency of occurrence of these dynemes for each
movement is constructed. SVM classification and sparse repre-
sentation based classification are used for movement recognition
on the test data. The effectiveness and robustness of this method

is shown through experimental results on a standard dataset of
motion capture data.

I. INTRODUCTION

Three-dimensional motion capture (mocap) data provide
a representation of the complex spatio-temporal structure of
human motion. During a motion capture session, the locations
of characteristic parts on the human body such as joints or
the joint angles are recorded over time, using appropriate
tracking devices [1]. Different tracking technologies (magnetic,
ultrasonic, inertial, optical, mechanical) are in use today.
Motion capture data, usually in the form of joint angles, are
used in computer games and animation movies to animate
a hierarchical structure (skeleton) representing a human [2],
where the nodes model the joints of the skeleton and the arcs
the segments (links). Some examples of mocap data are shown
in Figure 1.

Fig. 1. Walk, hop and run movement sequences from the HDM05 database
[3]

A node’s degrees of freedom depend on the allowable rota-
tions and translations of the corresponding joint in the skeleton.
Usually all joints have 3 rotational degrees of freedom (with
respect to each of the three axes) whereas the root node has

also 3 translation parameters. The angle values of a certain
frame form the n-dimensional pose or posture vector.

This paper presents a movement recognition method that
operates on motion capture data and is based on the bag of
words paradigm. As already mentioned, in a motion capture
sequence, a single frame is represented by the posture vector
of the human body. K-means is applied on the postures space
of the training data to discover characteristic posture patterns,
called dynemes. Then each posture is mapped to a specific
dyneme using a nearest neighbour approach and a histogram
with the frequencies of appearance of the dynemes for each
sequence is formed. Classification is implemented using two
different approaches either by using support vector machines
(SVM) or by applying the sparse representation based clas-
sification approach [4]. Principal Component Analysis (PCA)
is applied before the SVM classification in order to project
the histogram representation in a subspace of lower dimen-
sionality. An important advantage of the proposed method is
that it does not involve temporal information and thus it is not
affected by speed variations among subjects performing the
same movement. Despite the fact that ignoring the temporal
information might seem as disadvantage, the experimental
results verify that the method leads to very good recognition
rates. In addition, the method does not require segmentation
of motion capture sequences into "atomic" movements such as
steps.

An additional novelty of this method is that it uses a
modified K-means algorithm that can handle angular data such
as the joint angles involved in mocap. The need for such a
modification arises from the fact that angular data are periodic
and their natural representation is on the unit circle. Thus,
the notions of distance and mean value for angular data are
different from those for data on the line.

The remaining of this paper is organized as follows. In
Section II, we present a review on previous work. In Section
III, the proposed method is described in detail. In Section
IV, experimental performance evaluation of the method and
comparison with other approaches is presented. Conclusions
follow in Section V.

II. PRIOR WORK

Motion capture became popular only during the last years
so the body of research for movement recognition on mocap
data is not as extensive as for video data. Research on motion
capture data focuses mainly in motion indexing and retrieval
rather than movement recognition. The two tasks have many



differences but also bear important similarities such as the
extraction of a suitable representation for each sequence and
the need to define an appropriate similarity measure.

Li et al. [5] propose a method for recognition and classifica-
tion of motion capture data. Their method uses singular value
decomposition (SVD) to extract feature vectors from motion
data. SVM classifiers are used to segment and recognize
motion streams. SVM classification applied on the vector of
3D locations of characteristic points on the human body is
used by Wang et al. in [6] for human movement recognition.
Kadu et al. [7] adopt the tree-structured vector quantization
(TSVQ) method to represent human poses by codewords and
approximate the dynamics of mocap sequences by a codeword
sequence. For the classification, the authors use a spatial
domain approach based on the histogram of codewords and a
spatial-time domain approach via codeword sequence match-
ing. An algorithm for sequence alignment and activity recog-
nition, called IsoCCA, is described in [8]. IsoCCA extends the
canonical correlation analysis (CCA) algorithm, by means of
introducing a number of alternative monotonicity constraints.
The activity classification task performed in this paper is based
on a 1-NN classifier, that uses the alignment cost between se-
quences as distance metric, and yields improved classification
rates in comparison to other alignment algorithms, such as
CTW, DTW, Hungarian and CCA. In [9] the authors introduce
a method for real-time classification of dance gestures from
skeletal animation. An angular skeleton representation that
maps the motion data to a smaller set of features is used. The
full torso is fitted with a single reference frame. This frame is
used to parametrize the orientation estimates of both the first-
degree limb joints (joints adjacent to torso) and second-degree
limb joints (tips of the wireframe extremities such as the hands
and the feet). Then a cascaded correlation-based maximum-
likelihood multivariate classifier is used to build a statistical
model for each gesture class. The trained classifier compares
the input data with the gesture model of each class and outputs
a max-likelihood score. An input gesture is finally compared
with a prototype one using a distance metric that involves
dynamic time-warping. In [10], Lv et al. present a method for
movement recognition where each movement is represented as
a spatio-temporal template consisting of a set of channels with
weights. The channels correspond to the 3D joints trajectories
and the weights are learned according to the Neyman-Pearson
criterion. Movements are recognized by comparing them with
the templates. In [11], Deng et al. propose a method for
human motion recognition. First the method partitions a human
model in five parts, namely, torso, left upper limb, right
upper limb, left lower limb and right lower limb and K-
means is applied separately to each of these partitions. Then
several trials from each K-means class are used to train a
generalized model to represent that class. For isolated motion
recognition the authors propose a voting scheme that can be
used with common dynamic programming techniques and they
also present a new penalty-based similarity measure for DTW.
For continuous motion recognition, five body partition index
maps are constructed and applied. Concepts from the theory
of chaotic systems are used by the framework proposed by
Ali et al. in [12] to model and analyze nonlinear dynamics of
human actions. The authors use the trajectories of reference
body joints to create time series by considering each data
dimension separately. Mutual information and false nearest

neighbourhood algorithms are used to embed each time series
in a phase space of an appropriate dimension. Phase space
invariants are then used to represent the dynamical and metric
structure of the phase space. The invariants from all time series
are then used to generate a global feature vector of an action.
These feature vectors are then used a input in a K-nearest
neighbor classifier.

Xiang in [13] proposed a method for motion retrieval in
motion capture data based on ensemble HMM learning. First,
3D spatio-temporal features are extracted from training data
and used for ensemble HMM learning. Then each movement
class is learned with one HMM. Deng et al. [14] propose a
method for human motion retrieval that employs a motion
pattern discovery and matching scheme that breaks human
motions into a part-based, hierarchical motion representation.
Building upon this representation, a fast string matching al-
gorithm is used for efficient runtime motion query process-
ing. Liu et al. [15] construct a motion index tree based on
hierarchical motion description. The motion index tree serves
as a classifier to determine the sub-database that contains the
most promising motions that are similar to the query sample
in a motion retrieval context. The Nearest Neighbour rule-
based dynamic clustering algorithm is adopted to partition the
database and construct the motion index tree. A hierarchical
indexing structure is also used by Pradhan et al. [16]. The
proposed structure is based on the hierarchical structure of
the human body, consisting of independent index trees each
corresponding to a different sub-part of the body. Wu et al. [17]
present an efficient motion data indexing and retrieval method
based on self-organizing maps and the Smith - Waterman string
similarity metric. An efficient motion retrieval system based on
the query-by-example paradigm, which employs qualitative,
geometric similarity measures is proposed by Demuth et al.
[18]. Müller et al. in [19] propose a method for motion capture
data annotation by deriving a motion template that captures the
consistent and variable aspects of a motion class in an explicit
matrix representation. Chiu et al. [20] introduce an affine
invariant posture feature and propose an index map structure
based on the posture distribution of raw data for content-based
retrieval in human motion data. Forbes et al. [21] present a
search algorithm for unsegmented motion data that is based
on a weighted PCA-based pose representation that allows for
flexible and efficient pose-to-pose distance calculations. Liu et
al. [22] propose a method for analysing and indexing human-
motion databases. They partition every body pose in the motion
database into a hierarchy of low-dimensional local linear
models. Data sequences are represented by their transitions
through these local linear models. These transitions are called
cluster transition signatures and are used for inter-sequence
comparisons and sequence indexing.

III. METHOD DESCRIPTION

Let each movement be represented as a sequence of posture
vectors xi, i = 1, . . . , N where N is the number of frames of
the sequence. Each posture vector carries information for the
rotation angles in all skeleton joints

xi = {θi1, θi2, . . . , θin} (1)

where n is the number of rotation angles that form the posture
vector. It should be noted that the proposed method does



Fig. 2. Examples of dynemes extracted by the clustering algorithm.

not take into account information for the global rotation and
translation of the body.

The basic building blocks of the method are presented in
the following subsections.

A. Dyneme extraction

The first step of the algorithm concerns the quantization of
the posture vectors space and the extraction, through clustering,
of a codebook consisting of characteristic postures called
dynemes.

Indeed, in order to recognize K different movement
classes, we cluster the input space of posture vectors into C
clusters. The clusters are identified by unsupervised clustering,
using a K-means algorithm modified to work on angular data
(see subsection III-B). Angular K-means is applied on all
postures xij , i = 1, . . . , Nj , j = 1, . . . , L of all movement
sequences in the training set where Nj is the number of
frames of the j-th movement sequence and L the number of
the training sequences. The number C of clusters is selected
empirically and depends on the number of movements K that
are to be recognized, the different ways a movement can be
performed by different people, the different body types, etc.
For each cluster created by the angular K-means algorithm,
the centroid vc, c = 1, . . . , C is computed as the circular
mean of all postures in this cluster. This centroid represents
one dyneme. Due to the averaging procedure, dynemes don’t
correspond to postures from the training set but rather on "av-
erage", characteristic postures. Examples dynemes are shown
in Figure 2.

B. Angular K-means

Motion capture data, i.e. posture vectors xi, describe ro-
tation angles at the joints. As already mentioned, due to the
periodic nature of angular data neither the Euclidean distance
nor the mean value estimator for data on the line can be used
in such data. For example, an angle of 0 radians is the same as
an angle of 2π radians but their Euclidean distance wouldn’t
be zero but 2π. Furthermore, the average of two angles 5◦ and
355◦ is 0◦ and not 180◦ as the classical average operator would
entail. Two different measures, namely the distance between
two angles and the circular mean [23] can be used instead. The
distance between two angles θi, θj is the smallest arc between

the two points that are defined by these angles on the unit
circle:

arc(θi, θj) = π− | π− | θi − θj || (2)

The circular mean or sample mean direction x̄0 of N
angular observations θ1, · · · , θN represented by sample points
M1, · · ·,MN on a unit circle centred at point O is the
direction of the mean resultant vector R of the unit vectors
OM1, · · ·,OMN . Its value is given by:

x̄0 = arctan

(

S̄

C̄

)

, C̄ =
1

N

N
∑

i=1

cos θi, S̄ =
1

N

N
∑

i=1

sin θi

(3)
Since the proposed algorithm applies the K-means algorithm
on angle data, a modified angular version was constructed by
replacing the classical mean and Euclidean distance by the
above quantities.

C. Projection to dyneme space, evaluation of the bag of words

The next step of the method is to map all the posture
vectors xij in the training set to the dyneme space. The angular
K-means algorithm will assign each posture vector to a class
c = 1, . . . , C. Based on the clustering results we map each
posture to its assigned dyneme (class centroid). Thus each
movement sequence is represented in terms of dynemes, each
frame/posture being represented by the dyneme it has been
assigned to.

Next, we calculate for each movement the frequency of
appearance of every dyneme, thus forming for each movement
a histogram that characterizes it. Each histogram is a C-
dimensional vector sj = [si] , j = 1, . . . , L, i = 1, . . . , C:

[si] =
ni

Nj

(4)

where ni is the number of occurrences of the i-th dyneme
within the sequence and Nj the number of frames of the
sequence. Some histograms are shown in Figures 3 and 4

It is obvious that such a "bag of words" (or, in this case,
bag of postures) movement representation retains essentially no
information regarding the temporal order of the various pos-
tures within the movement, its duration, speed, and start/end
points, thus making it advantageous for recognition purposes,
despite its apparent simplicity. The experiments presented in
Section IV verify that this choice leads to very good movement
recognition rates.

D. Classification

To classify an unknown mocap posture sequence to one of
the movements that the algorithm has been trained to recognize
the following procedure is used.

First we use the dynemes evaluated during the training
stage to map each posture vector (frame) x of the testing
sequence into the nearest dyneme:

k = argmin
c∈[1...C]

(

n
∑

i=1

arc(vci − xi)) (5)

Once all posture vectors have been mapped to dynemes
we calculate the histogram qtest for the testing sequence



Fig. 3. Histograms of cartwheel (a) and run on place (b) movements generated
by the proposed method, along with some dynemes that correspond to the most
prominent peaks of the histograms

using (4). qtest characterizes the sequence and is used for the
classification/recognition. Two classifiers were used, a Support
Vector Machine (SVM) classifier and a classifier based on
sparse representation.

1) SVM classification: In this case, an SVM classifier is
trained using the histograms of the labeled sequences of the
training set. The trained SVM is then used to classify the
histogram qtest of an unknown sequence.

SVM is a widely used classification technique that stems
from statistical learning theory. SVM minimize both a bound
on the empirical error and the complexity of the classifier.
SVMs can classify linearly or non-linearly separable data. For
the non-linearly separable data SVM project the data into a
higher dimensional Hilbert space using kernel functions and
attempt to linearly separate them in this space [24].

Frequently used kernel functions include the polynomial
kernel, K(xi,xj) = (βxT

i xj + η)q , and the Radial Basis
Function (RBF) kernel, K(xi,xj) = exp{−γ|xi − xj |}.
Experiments conducted in this paper showed that the RBF
kernel had the best results for the K-class SVM that was
implemented.

Fig. 4. Histograms of clap above head (a) and clap (b) movements generated
by the proposed method, along with some dynemes that correspond to the
most prominent peaks of the histograms

Instead of using directly the sequences histograms as
input to the SVM classifier, PCA was used to reduce the
dimensionality of the movement histograms before the SVM
classification. In our case we keep the eigenvectors that cor-
respond to 90% of the energy and we form the PCA matrix
(Wpca). Then we project the histograms in the PCA space as
follows:

yi = WT
pcasi (6)

2) Sparse representation classification: In this case, the
classification is performed using the SRC algorithm proposed
in [4]. Initially, the training histograms form the matrix
A = [A1, A2, . . . , AK ] ∈ ℜm×n for K movement classes
where Ai = [si,1, si,2, . . . , si,ni

] is the matrix formed by
the histograms of the i-th class. Then the columns of A
are normalized to have unit ℓ2-norm and the following ℓ1-
minimization problem is solved:

x̂1 = argminx‖x‖1 subject to ‖Ax− qtest‖2 < ε (7)

The next step is to compute the residuals:

ri(qtest) = ‖qtest −Aδi(x̂1)‖2, i = 1, . . . ,K (8)



where δi(x̂1) keeps only the elements of x̂1 associated with
the i-th class, whereas all other elements are zeroed.

The histogram qtest is then classified in the class with
the smallest residual and the movement is recognized as the
movement of the associated class.

IV. EXPERIMENTAL RESULTS

The proposed method has been tested on the HDM05
database [3]. The database contains five persons performing
several movements. Fourteen of these movements namely, run
on place (runop), walk (walk), cartwheel (cartwheel), hop with
both legs (hpboth), hop with left leg (hopl), hop with right leg
(hopr), clap (clap), clap with hands above head (clapa), sit in
chair (sitc), sit in floor (sitf), left elbow to right knee (eltoknee),
right elbow to left knee (eltokneer), walk sideways (walks) and
walk sideways crossing the legs (walksc) were used in this
paper. The selected dataset contains in total 641 sequences,
in ASF/AMC format. The database contains rotation angles
at the corresponding joints for 29 body parts. Since some of
these body parts, for example the thumb or the toes, bear
no significant information for movement recognition, we have
retained only information for the following body parts: lower
back, upper back, thorax, right humerus, right radius, left
humerus, left radius, right femur, right tibia, right foot, left
femur, left tibia, left foot. In addition, the global translation
and rotation information (i.e. the rotation and translation of
the root node) were not considered by the algorithm.

The leave-one-person-out cross-validation (LOPOCV) pro-
cedure was used to assess the performance of the algorithm.
At each cycle of the procedure all movement sequences of one
person are retained to form the test set whereas all sequences
of the remaining four persons were used to form the training
set. The number of correctly classified movement sequences
in all cycles (5 cycles in total) were used to compute the
classification rate.

Experiments have been performed to identify the number
of clusters C (dynemes) and the variant that provides the
best results. In more detail, the two variants have been tested
for clusters/dynemes C ranging between 80 and 100: SVM
applied on histograms processed by PCA (SVM+PCA) and
sparse representation-based classification (SRC). For SVM an
RBF kernel and γ = 0.0001 was used. These SVM parameters
were selected through additional experimentation. The results
are shown in Figure 5. SVM+PCA classification provided the
best overall result, for C = 91 clusters/dynemes. The correct
classification rate achieved in this case was 88.92%. Sparse
representation classification provided 84.38% for C = 93
clusters/dynemes. In more detail, 8 out of 14 movements
achieved classification rate higher than 90% when SVM+PCA
was used for classification.

The best overall correct classification rate for the method
for both variants and a comparison with [8] and [5] is presented
in Table I. The implementation for the method [8] is provided
by the authors whereas the method in [5] was implemented
using rotation angles as input, as in [14]. Both variants of the
proposed method achieved better results than the methods in
comparison as can be seen in Table I. The variant that uses
SVM+PCA for classification achieved better results than the
SRC-based variant. It should be noted that the performance of
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Fig. 5. Correct classification rate for SVM+PCA and SRC for various values
of C (number of dynemes)

TABLE I. OVERALL BEST CORRECT CLASSIFICATION RATE AND

COMPARISON WITH [8] AND [5]

14 classes

SVM+PCA 88.92

SRC 84.38
ISOCCA [8] 49.14

SVD [5] 83.08

the isoCCA method is significally inferior from that reported
in [8] which is probably due to the fact that the experimental
evaluation of the paper in that paper was conducted in a leave-
one-out setting and not in a leave one out person setup, as in
our case. Obviously the latter is a much more fair experimental
setup than the former.

V. CONCLUSIONS

In this paper, a novel method for movement recognition in
motion capture data was proposed. The method utilizes charac-
teristic postures (dynemes) derived through a novel variant of
the K-means algorithm, along with a bag of postures approach
and SVM or SRC classifier. Experiment results verify that
the proposed approach provides good movement recognition
results surpassing other methods. In the future, we plan to
extend this method so as to operate in a temporal window
moving over a sequence so that we can achieve continuous
movement recognition, namely recognition on sequences con-
taining multiple successive movements. Extensions towards
motion indexing and retrieval will also be considered.
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