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ABSTRACT

In this paper a novel method is introduced for propagat-
ing label information on data with multiple representations.
The method performs dimensionality reduction of the data
by calculating a projection matrix that preserves locality
information and a priori pairwise information, in the form
of must-link and cannot-link constraints between the vari-
ous data representations. The final data representations are
then fused, in order to perform label propagation. The per-
formance of the proposed method was evaluated on facial
images extracted from stereo movies and on the UCF11 ac-
tion recognition database. Experimental results showed that
the proposed method outperforms state of the art methods.

Index Terms— Locality preserving projections, dimen-
sionality reduction, label propagation, multiple graphs

1. INTRODUCTION

Label propagation methods aim the spread of label informa-
tion from a small set of labelled data to a larger set of unla-
belled data. The label propagation effectiveness depends on
two factors: the graph construction and the label inference
method. Graph construction deals with the choice of the data
representation and the pairwise similarity (or distance) met-
ric, while label inference methods try to assign the same label
to similar data and different labels to dissimilar data, accord-
ing to the above mentioned similarity measure.

A typical method for data representation mainly em-
ployed on images that leads to dimensionality reduction is
Locality Preserving Projections (LPP) [1, 2]. In LPP, the data
are projected to a reduced dimensionality space, so that the
locality information of the original data is preserved. Sev-
eral modifications of LPP exist, that incorporate additional
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information and constraints for the data, such as, sparsity
constraints [3], discriminant information from the entire fea-
ture space [2] or from the availability of labeled data [4] and
orthogonality constraints [5].

After data feature extraction through LPP and graph con-
struction through a chosen similarity measure, label propa-
gation is performed on the data (graph nodes), according to
a label inference method, which specifies the way the labels
are spread from the set of labeled data to the set of unlabeled
data. Usually, iterative label inference methods are employed
[6–8]. In these algorithms, label spread is performed grad-
ually on the unlabeled data, according to some update rule.
The final label allocation converges to a stationary state, as
t → ∞. The stationary state of the iterative algorithm can be
computed beforehand. Therefore, in such cases, these meth-
ods are performed in a single step. In cases where the data can
be represented in more than one feature spaces, one graph for
each representation method can be constructed. The fusion of
multiple data representations can be performed either at the
graph construction level, e.g., by concatenating the separate
feature vectors into a global feature vector, or at the decision
level, e.g., by learning a propagation algorithm for each data
representation and fusing the propagation results [9–11].

In this paper, we propose a novel method for label prop-
agation on data with multiple representations. The proposed
method exploits information obtained from multiple data rep-
resentations, by finding a projection matrix that preserves lo-
cality information and additional a priori pairwise informa-
tion between the data in all data representations in the form
of must-link and cannot-link constraints. The data representa-
tions are then projected on the same reduced-dimensionality
space. The data representation projections are then combined
in a single optimization framework in order to perform la-
bel propagation, by extending the single-graph regularization
framework in [8] as a weighted sum of multiple objective
functions. The performance of the proposed method was eval-
uated on facial images extracted from stereo movies and on
the UCF11 action recognition database.



2. THE PROPOSED METHOD

We propose a novel method for performing linear dimension-
ality reduction on data with multiple representations, by sat-
isfying additional pairwise similarity and dissimilarity con-
straints. The multiple data representations may come from
the left and right channel image representations for the case of
stereo visual data, or from the extraction of multiple features
for representing the same data set. For each data represen-
tation, a similarity matrix is constructed. Let Xk = {xk,i ∈
ℜN , i = 1, . . . ,M, k = 1, . . . ,K} be the data set in the orig-
inal space and Gk = (Xk, Ek) be the graph, whose nodes are
the data entries of representation k and whose edges are the
pairwise data relationships. The graph weight matrix for rep-
resentation k is computed according to the heat kernel equa-
tion:

Wk,ij = e
−

∥xk,i−xk,j∥
2

σk , (1)

were σk is the mean edge length distance among neighbors in
the k-th representation. The data pairwise constraints indicate
whether two data should or should not have the same label.
More precisely, the sets S and D of similar and dissimilar
pairs are defined as:

S = {(i, j)|xi,xj must have the same label} (2)

and

D = {(i, j)|xi,xj must have different labels}, (3)

respectively. The pairwise constraints are set for all data rep-
resentations.

The proposed method consists of the following steps.
First, the pairwise constraints are propagated to the neigh-
boring data. Then, the projection matrix that incorporates
information from all data representations and from the propa-
gated pairwise constraints, as well as the coefficients of each
representation are calculated. Finally, the data representa-
tions are projected on the new space and, subsequently, the
projections are fused in an optimization framework for label
propagation.

2.1. Pairwise constraints propagation

Intuitively, if we know that two nodes have the same labels
from prior knowledge, then the neighbors of these nodes
should also have the same label, due to neighboring node
similarity. In a similar argumentation, if we know that two
nodes have dissimilar labels, then the nodes that belong to the
neighborhood of one node should have different label from
the other node and vice versa. This means that we can gen-
eralize the pairwise constraints to include neighboring nodes
in an iterative procedure, similarly to label propagation. Let
Ws, Wd, two weight matrices constructed as follows:

Ws,ij =

{
1, if (i, j) ∈ S
0, otherwise , Wd,ij =

{
1, if (i, j) ∈ D
0, otherwise.

(4)

Let Ni be the neighborhood of node i, based on, e.g., thresh-
olding the Euclidean distance between two nodes and P ∈
ℜM×M be a sparse weight matrix with entries:

Pij =

{ 1
|Ni| , if j ∈ Ni

0, otherwise,
(5)

where |Ni| is the cardinality of the set Ni. It is clear that
the sum of each row of P is 1. We define a function Fs that
assigns a real value to every graph node that indicates its label
similarity to the other graph nodes. In each iteration, the node
incorporates some information from its neighbors and retains
some information from its initial state Ws. At t-th iteration,
the label similarity is equal to:

F(t)
s = aPF(t−1)

s + (1− a)Ws, (6)

which converges to the steady state [12]:

Fs = (1− a)(I− aP)−1Ws. (7)

Similarly, the label dissimilarity is propagated according to:

Fd = (1− a)(I− aP)−1Wd. (8)

The matrices Fs and Fd contain the information of the prop-
agated pairwise constraints.

2.2. Locality Preserving Projections on Multiple Graphs

The proposed method, called Multiple-graph Locality Pre-
serving Projections (MLPP), searches for a N ×L projection
matrix A = [a1, . . . ,aL] that operates on all data representa-
tions and also searches for the optimal linear combination of
the data projections. Let xki, k = 1, . . . ,K be the different
data representations of sample i and al, l = 1, . . . , L the pro-
jection vectors that form the columns of the projection matrix.
The proposed method minimizes the objective function:

G(A, τ ) =
∑
k,l

τk

{
M∑

i,j=1

(aT
l xk,i − aT

l xk,j)
2Wk,ij

+ β
∑

(i,j)∈S

(aT
l xk,i − aT

l xk,j)
2Fs,ij

− γ
∑

(i,j)∈D

(aT
l xk,i − aT

l xk,j)
2Fd,ij


+ ε∥τ∥2, (9)

subject to the constraints:

aTl aj = δlj ,
∑
k

τk = 1, τk ≥ 0, (10)

where τk, k = 1, . . . ,K is the weight of the k-th data repre-
sentation in the optimization framework, β, γ are parameters
that regulate the significance of the pairwise similarity and
dissimilarity constraints, respectively and ε is a regularization



parameter that prevents the coefficients vector τ from taking
increased value for only one image representation. The first
sum in (9) ensures that the locality information of the data
in the original space is preserved in the projected space. The
second/third sum in (9) ensure that the similar/dissimilar data
pairs are projected close to/away from each other. Finally, the
first constraint in (10) ensures that the projection matrix A is
orthonormal. By simple algebraic manipulations, (9) can be
written as:

argmin
al,τ

∑
k,l

τka
T
l Xk (Lk + βLs − γLd)X

T
k al + ε∥τ∥2,

(11)
where Lk = Dk − Wk is the graph Laplacian for the k-th
data representation and Ls = Ds − Fs, Ld = Dd − Fd are
the graph Laplacians of the pairwise similarity and dissimilar-
ity constraints, respectively. Lk varies according to the data
representation, while Ls, Ld are constant for all representa-
tions. By selecting the parameters β, γ so that the matrix
Lc = βLs − γLd is positive semi-definite, the cost function
(11) under the constraints (10) is convex, with respect to the
variables al and τ . Then, the optimization problem is solved
iteratively for al and τ as follows:

1. First, τ is initialized with the values τk = 1
K , k =

1, . . . ,K.

2. The system (10), (11) is solved for a by constructing
the Lagrangian function:

L(al, λ) = aT
l

[∑
k

τkXk (Lk + βLs − γLd)X
T
k

]
al−λaT

l al.

(12)
By setting the partial derivative of the Lagrangian func-
tion with respect to al equal to zero ∂L(al,λ)

∂al
= 0, we

get:[∑
k

τkXk (Lk + βLs − γLd)X
T
k

]
al = λal. (13)

It is easy to see that the projection vectors al, l =
1, . . . , L that minimize the objective function are the
eigenvectors that correspond to the L smallest eigen-
values of matrix

∑
k τkXk (Lk + βLs − γLd)X

T
k . Fi-

nally, the projection matrix A is constructed: A =
[a1, . . . ,aL].

3. Next, (10), (11) are solved with respect to τ , for the
projection matrix A that was calculated as in (13). By
writing (11) in matrix form with respect to τ , we get:

argmin
τ

∑
k

τktr
[
ATXk(Lk + βLs − γLd)X

T
k A

]
+ ετT τ ,

(14)
subject to the constraints:

τT1K = 1, τk ≥ 0, k = 1, . . . ,K, (15)

where 1K ∈ ℜK is a vector of ones. The system (14)-
(15) is a quadratic programming problem with respect
to τ and can be solved with any quadratic programming
solver.

4. Steps 2 and 3 are repeated until convergence.

After the projection matrix A and the coefficients vector τ
are computed, the data projections X′

k of representation k to
the reduced dimensional space are computed as:

X′
k = ATXk. (16)

2.3. Label propagation on multiple graphs

The data projections X′
k are fused, in order to perform la-

bel propagation. First, one graph is constructed for each X′
k,

with weight matrices W′
k computed from (1). Then, label

propagation is performed concurrently on the K graphs, by
extending the single-graph regularization framework in [8] as
a weighted sum of K objective functions:

Q(F) =
1

2

K∑
k=1

τktr
(
FTL′

kF
)
+

1

2
µtr
(
(F−Y)T (F−Y)

)
,

(17)
where L′

k is the normalized graph Laplacian of representation
k. The weights τk are determined as in Section 2.2. (17) is
convex with respect to F. Therefore, the global optimum can
be found by setting the partial derivative of Q(F) equal to
zero. The global optimum is thus given by:

F = (1− ζ)

(
I− ζ

∑
k

τkS
′
k

)−1

Y, (18)

where we set L′
k = I − S′

k, S′
k = D

′−1/2
k W′

kD
′−1/2
k and

ζ = 1
1+µ .

3. EXPERIMENTS

3.1. Label propagation on stereo facial images

The performance of the proposed method was tested on
person identity label propagation on 13,850 facial images
belonging to 131 actors extracted from three stereo movies
through automatic detection and tracking which can be per-
formed in various ways [13–15]. More specifically, 5,398,
3,498 and 4.954 facial images were extracted from movies
1, 2 and 3, respectively. The data modalities are the left and
right channel facial images (K = 2). The similarity and
dissimilarity weight matrices (4) are constructed as:

Ws,ij =

{
1, if images i, j are in the same trajectory
0, otherwise,

(19)

Wd,ij =

{
1, if images i, j are in the same frame
0, otherwise. (20)



Table 1. Classification accuracy of MLPP and single-channel
LPP, OLPP, PCLPP and NPE for three stereo movies

MLPP LPP OLPP PCLPP NPE
Movie 1 83.47% 76.17% 71.32% 78.34% 77.23%
Movie 2 67.43% 59.29% 51.95% 62.21% 60.18%
Movie 3 71.21% 64.91% 63.69% 66.01% 65.60%

Average 75.05% 67.90% 63.73% 69.03% 68.78%

Table 2. Classification accuracy of MLPP and stereo LPP,
OLPP, PCLPP and NPE for three stereo movies

MLPP LPP OLPP PCLPP NPE
Movie 1 83.47% 78.40% 73.11% 80.36% 79.48%
Movie 2 67.43% 62.40% 54.68% 64.36% 63.62%
Movie 3 71.21% 67.65% 66.78% 68.54% 68.30%

Average 75.05% 70.53% 66.22% 72.10% 71.49%

The performance of the proposed Locality Preserving
Projections on multiple graphs (MLPP) is compared to
the performance of similar state of the art subspace tech-
niques, namely the standard Locality Preserving Projec-
tions (LPP) [1], Orthogonal Locality Preserving Projections
(OLPP) [5], Locality Preserving Projections with Pairwise
Constraints (PCLPP) [16] and Neighborhood Preserving Em-
bedding (NPE) [17]. In the experiments, 10-fold cross vali-
dation was employed. One fold was manually assigned labels
and the labels were propagated to the rest. The dimension of
the data is reduced from 1200 to 75. In order to test the signif-
icance of the stereo information to the classification accuracy,
we compared the performance of the proposed algorithm to
the performance of LPP, OLPP, PCLPP and NPE when they
operate on one luminance channel of the stereo video. La-
bel propagation is performed by exploiting local and global
consistency, as proposed in [8]. The experimental results are
shown in Table 1. We notice that in all three videos the clas-
sification accuracy of the proposed MLPP algorithm achieves
a much better classification accuracy. The average increase in
accuracy with MLPP with respect to the best single-channel
subspace method PCLPP is 6.02%.

Next, we test the performance of the single-channel sub-
space methods, when they operate separately on the left and
right channels of the stereo videos and the late fusion method
described in [18] is employed for performing label propaga-
tion on the stereo facial images. The experimental results are
shown in Table 2. We notice that, when the existing dimen-
sionality reduction techniques are combined with the label
propagation approach and a late fusion approach the perfor-
mance is again worse than the performance of the proposed
MLPP algorithm. More specifically, the average increase in
accuracy with MLPP with respect to the best state of the art
stereo method is 2.95%.

3.2. Algorithm performance on data with more modali-
ties

The proposed method has been tested in the UCF11 data
set [19], that consists of 1,600 Youtube videos depicting 11
action classes. Each video is represented with the state of the
art action description exploiting the BoF-based video repre-
sentation [20] evaluated on 5 descriptor types, each descrip-
tion type consisting one data modality (K = 5): Histograms
of Oriented Gradients (Mod 1), Histograms of Optical Flow
(Mod 2), Motion Boundary Histograms projected on the x-
(Mod 3) and y-axis (Mod 4) and Normalized Trajectories
(Mod 5). In the experiments, 10-fold cross validation was
employed. One fold was manually assigned labels and the la-
bels were propagated to the rest. The dimension of the data is
reduced from 1000 to 75. Since no prior pairwise constraints
information is available for the data, the matrices Ls, Ld are
set zero. The experimental results for the proposed method
and the state of the art method LPP, which achieved the best
performance, are shown in Table 3. The experimental results
for the single-modality methods are shown in Table 4. We
notice that, the performance of MLPP is 6.95% better than
the performance of the best single-modality LPP and 0.3%
better than the multi-channel LPP.

Table 3. Classification accuracy of MLPP and multi-modal
LPP, OLPP and NPE.

MLPP LPP OLPP NPE
64.92% 64.62% 59.24% 59.99%

Table 4. Classification accuracy of LPP for modalities 1-5.
Mod 1 Mod 2 Mod 3 Mod 4 Mod 5

LPP 56.87% 48.74% 57.97% 57.59% 48.76%
OLPP 48.06% 47.01% 42.63% 44.25% 39.47%
NPE 33.47% 49.00% 38.36% 56.34% 48.33%

4. CONCLUSION

In this paper, a novel method for propagating person iden-
tity labels on facial images extracted from stereo videos was
introduced. The proposed method operates on data with
multiple representations, by calculating a projection matrix
that projects the multiple data representation matrices to a
reduced dimensionality space that preserves the locality in-
formation in the original representations and that satisfies a
priori pairwise information in the form of pairwise must-link
and cannot-link constraints. Experimental results showed
that the proposed MLPP has increased classification accuracy
compared to state of the art methods.



5. REFERENCES

[1] X. Niyogi, “Locality preserving projections,” in Neural
information processing systems, vol. 16, 2004, p. 153.

[2] J. Lu and Y.-P. Tan, “Regularized locality preserving
projections and its extensions for face recognition,”
IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 40, no. 3, pp. 958–963, 2010.

[3] L. Qiao, S. Chen, and X. Tan, “Sparsity preserving pro-
jections with applications to face recognition,” Pattern
Recognition, vol. 43, no. 1, pp. 331–341, 2010.

[4] G.-F. Lu, Z. Lin, and Z. Jin, “Face recognition using dis-
criminant locality preserving projections based on max-
imum margin criterion,” Pattern Recognition, vol. 43,
no. 10, pp. 3572–3579, 2010.

[5] L. Zhu and S. Zhu, “Face recognition based on orthog-
onal discriminant locality preserving projections,” Neu-
rocomputing, vol. 70, no. 79, pp. 1543 – 1546, 2007.

[6] X. Zhu, Semi-Supervised Learning Literature Survey.
Technical Report, University of Wisconsin - Madison,
2008.

[7] P. T. Pham, T. Tuytelaars, and M.-F. Moens, “Naming
people in news videos with label propagation,” IEEE
MultiMedia, vol. 18, no. 3, pp. 44 –55, march 2011.

[8] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and
B. Schlkopf, “Learning with local and global consis-
tency,” in Advances in Neural Information Processing
Systems 16. MIT Press, 2004, pp. 321–328.

[9] M. Wang, X.-S. Hua, R. Hong, J. Tang, G.-J. Qi,
and Y. Song, “Unified video annotation via multigraph
learning,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 19, no. 5, pp. 733–746, 2009.

[10] A. Argyriou, M. Herbster, and M. Pontil, “Combining
graph laplacians for semi-supervised learning,” in Ad-
vances in Neural Information Processing Systems 18.
MIT Press, 2005, pp. 67–74.

[11] T. Kato, H. Kashima, and M. Sugiyama, “Robust label
propagation on multiple networks,” IEEE Transactions
on Neural Networks, vol. 20, no. 1, pp. 35 –44, 2009.

[12] F. Wang and C. Zhang, “Label propagation through lin-
ear neighborhoods,” in Proceedings of the 23rd interna-
tional conference on Machine learning, ser. ICML ’06.
ACM, 2006, pp. 985–992.

[13] O. Zoidi, A. Tefas, and I. Pitas, “Visual object tracking
based on local steering kernels and color histograms,”
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 23, no. 5, pp. 870–882, May 2013.

[14] M. Pateraki, H. Baltzakis, P. Kondaxakis, and P. Tra-
hanias, “Tracking of facial features to support human-
robot interaction,” in IEEE International Conference on
Robotics and Automation, 2009. ICRA ’09, May 2009,
pp. 3755–3760.

[15] I. Pitas, Digital video and television. I. Pitas, 2013.

[16] H. Cevikalp, J. Verbeek, F. Jurie, A. Klaser et al.,
“Semi-supervised dimensionality reduction using pair-
wise equivalence constraints,” in 3rd International Con-
ference on Computer Vision Theory and Applications
(VISAPP’08), 2008, pp. 489–496.

[17] X. He, D. Cai, S. Yan, and H.-J. Zhang, “Neighborhood
preserving embedding,” in Proc. Int. Conf. Computer Vi-
sion (ICCV’05), 2005.

[18] M. Wang, X.-S. Hua, R. Hong, J. Tang, G.-J. Qi,
and Y. Song, “Unified video annotation via multigraph
learning,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 19, no. 5, pp. 733–746, 2009.

[19] J. Liu, J. Luo, and M. Shah, “Recognizing realistic ac-
tions from videos ”in the wild”,” in IEEE Conference on
Computer Vision and Pattern Recognition, June 2009,
pp. 1996–2003.
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