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ABSTRACT

In this paper a novel method is introduced for semi-supervised
dimensionality reduction on facial images extracted from
stereo videos. It operates on image data with multiple rep-
resentations and calculates a projection matrix that preserves
locality information and a priori pairwise information, in the
form of must-link and cannot-link constraints between the
various data representations, as well as label information for
a percentage of the data. The final data representation is a lin-
ear combination of the projections of all data representations.
The performance of the proposed Semi-supervised Multi-
ple Locality Preserving Projections method was evaluated in
person identity label propagation on facial images extracted
from stereo movies. Experimental results showed that the
proposed method outperforms state of the art methods.

Index Terms— Locality preserving projections, semi-
supervised learning, label propagation

1. INTRODUCTION

Dimensionality reduction refers to the procedure of projecting
high-dimensional data onto a subspace of the original high-
dimensional space. When the data areM facial images of size
Nx×Ny pixels, a typical dimensionality reduction method is
to find a projection matrix A ∈ <N×L that maps the images
xi ∈ <N , i = 1, . . . ,M , N = NxNy on a subspace <L,
L << N . The rows of the projection matrix A form the
basis vectors in the resulting space <L and the data projec-
tions x′i = ATxi ∈ <L form the facial image features to
be used in the classification task. Such a popular subspace
representation widely used in person recognition algorithms,
that operates on graphs, is the Locality Preserving Projec-
tion (LPP) [1–3]. The objective of LPP is the projection of
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the original high-dimensional data to a reduced dimensional
space, so that the projected data inherit the locality informa-
tion of the original data, i.e, when ‖xi − xj‖2 is small, then
‖x′i−x′j‖2 is small as well. Sparsity constraints in the objec-
tive function of LPP were imposed in [4], so that the sparse
reconstructive weights are preserved, while in [3], a regular-
ized LPP method was presented, that extracts useful discrim-
inant information from the entire feature space. Moreover,
orthogonality constraints were imposed on the discriminant
LPP in [5]. LPP performs unsupervised dimensionality re-
duction, because the only information it exploits is from the
data structure in the original space <N . Several extensions
of LPP have been proposed in the literature, that incorporate
prior information about the data and extend LPP to the semi-
supervised and the fully-supervised framework, such as [6–8].
In [6], LPP aims, apart from locality preservation, the maxi-
mization of the between-class distance and the minimization
of the within-class distance of a small number of available la-
beled data, while [7] maximizes the difference between the
locality preserving between-class scatter matrix and locality
preserving within-class scatter matrix. Finally, [8] exploits a
priori pairwise constraints on the original data.

In this paper, we propose a novel method for semi-
supervised dimensionality reduction on data with multiple
representations that finds application in person identity la-
bel propagation on stereo videos. Generally the multiple
data representations are obtained when multiple features are
employed for data description. In the case of stereo facial
images, the multiple representations used are the left and
right channel facial images. The method exploits informa-
tion obtained from multiple data representations, by finding
a projection matrix that preserves locality information and
additional a priori information between the data in all data
representations. The proposed method searches for a pro-
jection matrix that projects all data representations on the
same reduced-dimensional space. Each data representation
influences the projection matrix with a weight that is auto-
matically learned from the regularization framework. The



projections of all data representations are then combined into
a single reduced-dimensional representation, which will be
used in the classification task. Experimental results on person
identity label propagation on stereo videos showed that the
proposed dimensionality reduction framework outperforms
state of the art dimensionality reduction methods based on
LPP.

2. SIMILARITY GRAPH CONSTRUCTION

Let X = {x1, . . . ,xM} be the set of M data that belong to
classes C = {1, . . . , C}. Each sample belongs only in one
class. The data have K representations. For the k-th repre-
sentation method, the data matrix Xk = [x1,k, . . . ,xM,k] ∈
<N×M is constructed, where xi,k denotes the feature vec-
tor of the k-th representation of the i-th sample. Let us con-
sider that the class labels l(xj) ∈ C, j = 1, . . . , nl of nl
data are known. Let G = (X , E) be the graph, whose nodes
are the data entries xi in the set X and whose edges are the
pairwise data relationships. The edge in the graph that con-
nects the nodes i and j is assigned with a value Wij that in-
dicates the similarity between the adjacent graph nodes. Usu-
ally, this similarity is computed according to the heat kernel
equation [1]:

Wij = e−
‖xi−xj‖

2

σ , (1)

were σ is the mean edge length distance among neighbors.
In the proposed method, we incorporate the label information
into the similarity matrix W′ as follows:

W ′ij =


1, if l(xi) = l(xj)
0, if l(xi) 6= l(xj)
Wij , if @xk ∈ Ni|l(xk) 6= l(xi)&Wkj > Wij

aWij , if ∃xk ∈ Ni|l(xk) 6= l(xi)&Wkj > Wij

,

(2)
where l(xi) and Ni denote the label and the neighborhood of
sample xi, respectively, and 0 ≤ a ≤ 1 is a penalty parame-
ter. The first two cases in (2) refer to the pairwise similarity
between the labeled samples i and j and the last two refer to
the pairwise similarity between the labeled sample i and the
unlabeled sample j. In experiments we set a = 0.5. One sim-
ilarity matrix Wk is constructed for each data representation.

3. PAIRWISE CONSTRAINTS

Let S be the set of similar pairs:

S = {(i, j)|xi,xj must have the same label}, (3)

and D be the set of dissimilar pairs:

D = {(i, j)|xi,xj must have different labels}. (4)

Two weight matrices are constructed, Ws and Wd, for the
similar and dissimilar constraints, respectively, as follows:

Ws,ij =

{
1, if (i, j) ∈ S
0, otherwise. (5)

Wd,ij =

{
1, if (i, j) ∈ D
0, otherwise (6)

Intuitively, if we know that two nodes have the same labels
from prior knowledge, then the neighbors of these nodes
should also have the same label, due to neighboring node
similarity. In a similar argumentation, if we know that two
nodes have dissimilar labels, then the nodes that belong to the
neighborhood of one node should have different label from
the other node and vice versa. This means that we can gener-
alize the pairwise constraints to include neighboring nodes in
an iterative procedure, similarly to label propagation. Let Ni
be the neighborhood of node i, based on, e.g., thresholding
the Euclidean distance between two nodes and P ∈ <M×M
be a sparse weight matrix with entries:

Pij =

{ 1
|Ni| , if j ∈ Ni
0, otherwise,

(7)

where |Ni| is the cardinality of the set Ni. It is clear that
the sum of each row of P is 1. We define a function Fs that
assigns a real value to every graph node that indicates its label
similarity to the other graph nodes. In each iteration, the node
incorporates some information from its neighbors and retains
some information from its initial state Ws. At t-th iteration,
the label similarity is equal to:

F(t)
s = aPF(t−1)

s + (1− a)Ws, (8)

which converges to the steady state [9]:

Fs = (1− a)(I− aP)−1Ws. (9)

Similarly, the label dissimilarity is propagated according to:

F
(t)
d = aPF

(t−1)
d + (1− a)Wd, (10)

which converges to the steady state:

Fd = (1− a)(I− aP)−1Wd. (11)

4. SEMI-SUPERVISED LPP ON MULTIPLE GRAPHS

In this paper, we propose a novel method for performing lin-
ear dimensionality reduction on data with multiple represen-
tations, where the class (label) of nl data is known. The mean
class vectors of the labeled samples are computed by:

mc =
1

|Lc|
∑

xi∈Lc

xi, c ∈ C, (12)

where Lc is the set of samples with label c ∈ C. The mean
class vectors similarity matrix is given by the heat kernel
equation:

Bij = e−
‖mci−mcj

‖2

σ . (13)



The proposed method takes into account locality information,
obtained from the data similarity matrix, class information,
obtained from the labeled data, and a priori pairwise simi-
larity and dissimilarity constraints. It searches for a N × L
projection matrix A that operates on all visual data views
(e.g., the left/right video channel) and also searches for the
optimal linear combination of the data projections. Let Xk,
k = 1, . . . ,K be the different representations data matrix.
The objective of the proposed method is the minimization of
the function:

argmin
A,τ

K∑
k=1

τk
[
tr
(
ATXkLWk

XT
kA
)
+ γtr

(
ATXkLSX

T
kA
)

−δtr
(
ATXkLDX

T
kA
)
− ζ

(
ATMkLBkM

T
kA
)]
+ε‖τ‖2

(14)

subject to the constraints:

ATA = I,

K∑
k=1

τi = 1, τi ≥ 0, (15)

where γ, δ, ζ are parameters that regulate the significance of
the pairwise similarity and dissimilarity constraints and the
mean class vectors similarities, respectively and ε is a regu-
larization parameter that punishes the coefficients vector τ to
take increased value for only one image representation. The
first constraint in (15) ensures that the projection matrix A is
orthonormal. The matrices LWk, LS , LD and LBk are the
graph Laplacians defined by the weight matrices W′

k, Fs, Fd
and Bk, respectively, according to:

L = D−1/2(D−W)D−1/2, (16)

where D is a diagonal matrix with elements Dii =
∑
jWij .

LWk, LBk vary according to the data representation, while
Ls, Ld are constant for all representations. Finally, the ma-
trices Mk ∈ <N×C the matrix with columns the mean class
vectors for the k-th representation. The first trace in (14) en-
sures that the locality information of the data in the original
high dimensional space is preserved in the projected space.
The second/third trace in (14) ensures that similar/dissimilar
data pairs are mapped close to/away from each other. Finally,
the fourth trace in (14) forces the classes mean vectors to be
mapped away from each other.

By selecting the parameters γ, δ and ζ so that the ma-
trix Xk (LWk + γLs − δLd)XT

k − ζMkLBkM
T
k is positive

semi-definite, the cost function (14) under the constraints (15)
is convex, with respect to the variables A and τ . In practice,
the value of γ is chosen to be larger than the values of δ and
ζ by several orders of magnitude. In the experiments, we set
γ = 100 and δ = ζ = 0.01. The optimization problem is
solved iteratively for A and τ as follows:

1. First, τ is initialized with the values τk = 1
K , k =

1, . . . ,K.

2. The system (14), (15) is solved for A by solving the
following eigenvalue problem:

[∑
k

τkXk (Lk + βLs − γLd)XT
k−

∑
k

ζMkLBkM
T
k

]
al = λal. (17)

The projection vectors al, l = 1, . . . , L that mini-
mize the objective function are the eigenvectors that
correspond to the L smallest eigenvalues of matrix∑
k τkXk (Lk + βLs − γLd)XT

k − ζMkLBkM
T
k .

Finally, the projection matrix A is constructed: A =
[a1, . . . ,aL].

3. Next, (14), (15) are solved with respect to τ , for the
projection matrix A that was calculated as in (17). By
writing (14) in matrix form with respect to τ , we get:

argmin
τ

∑
k

τk
{

tr
[
ATXk(Lk + βLs − γLd)XT

kA
]

−ζtr
[
MkLBkM

T
k

]}
+ ετT τ , (18)

subject to the constraints:

τT1K = 1, τk ≥ 0, k = 1, . . . ,K, (19)

where 1K ∈ <K is a vector of ones. The system (18)-
(19) is a quadratic programming problem with respect
to τ and can be solved with any quadratic programming
solver.

4. Steps 2 and 3 are repeated until convergence.

5. CLASSIFICATION VIA LABEL PROPAGATION

After the projection matrix A and the coefficients vector τ
are computed, the data projections X′k of representation k to
the reduced dimensional space are computed as:

X̃k = ATXk. (20)

For each X̃k, a weight matrix W̃k is computed according to
(1), (2). Label propagation is then performed based on the
weighted average:

W̃ =
∑
k

τkW̃k, (21)

according to the following rule [10]:

l(xi) = argmaxFi�, (22)

where Fi� is the i-th raw of matrix [10]:

F = (1− β)
(
I− βS̃

)−1
Y ∈ <N×C , (23)



S̃ = diag
(∑M

j=1 W̃ij

)−1/2
W̃diag

(∑M
j=1 W̃ij

)−1/2
, 0 ≤

β ≤ 1, and Y ∈ <N×C is the initial state matrix, whose
(i, c)-entry takes the value 1 if l(xi) = c, else it takes the
value 0.

6. EXPERIMENTS

6.1. Stereo Facial Image Database Description

Experiments were conducted on three stereo movies. The
task was to perform person identity (label) propagation on
the facial images that appear in these movies with a proce-
dure that emulates the annotation procedure followed in tele-
vision archives by archivists. The movies have total duration
6 hours, 4 minutes and 16 seconds and 528,348 frames in to-
tal.

First, the movies were processed with a shot cut detection
algorithm and the shot boundaries were detected. Then, the
facial images where automatically extracted by performing
automatic face detection and tracking. The face detector used
was the Viola-Jones face detector [11], modified to incorpo-
rate color information [12] that eliminates a large amount of
false detections. Face detection was performed separately on
the left and right video channels, retaining only the facial im-
ages that were detected in both channels. When a facial image
was detected in both channels, it was tracked for the next 20
frames or until a shot cut was detected, using a single channel
appearance-based object tracker [13] resulting in a so called
facial image trajectory consisting of facial image rectangular
regions of interest (ROIs). The procedure was repeated for
the remaining video frames. Sequential facial image trajecto-
ries that belonged to the same person were concatenated into
a single trajectory. In total, 171,649 facial images were de-
tected in 4,845 trajectories, belonging to 129 different actors
plus some false detections.

Since the number of the extracted facial images is very
large, the resulting graph weight matrix of the facial images
would be very large and too expensive to compute. In order
to decrease the computational complexity and increase anno-
tation speed, we make the following assumptions for the data
(which construct the data pairwise similarity and dissimilarity
constraints):

1. facial images that belong to the same trajectory belong
to the same actor,

2. facial images appearing in the same video frame belong
to different actors.

According to the first assumption, only one image from each
trajectory, e.g. the first, is required for the annotation process.
The remaining images in the facial image trajectory simply
adopt the label of the first image. However, by selecting only
one image from each trajectory, information about the trajec-
tory length is discarded during the propagation procedure. In

SSMLPP LPP OLPP PCLPP DLPP
Movie 1 79.58% 76.35% 72.24% 76.13% 76.90%
Movie 2 63.17% 58.73% 51.81% 61.70% 61.74%
Movie 3 66.97% 64.81% 63.77% 65.97% 66.49%
Average 69.91% 66.63% 62.61% 67.93% 68.38%

Table 1. Classification accuracy of SSMLPP and state the of
the art LPP, OLPP, PCLPP and DLPP for three stereo videos

order to retain this information, we select more images from
the longer trajectories and less from the shorter ones. In total,
13,850 images were selected from the three movies, which
consist 5.85% of the extracted facial images. The facial im-
ages were considered to belong to 131 classes, one class for
each actor that appear in the movies. Finally, the facial images
are aligned with the funnel algorithm [14].

6.2. Comparison of SSMLPP to other subspace methods

The performance of the proposed Semi-supervised Locality
Preserving Projections on multiple graphs (SSMLPP) is com-
pared to the performance of similar state of the art subspace
techniques, namely the standard Locality Preserving Projec-
tions (LPP) [1], Orthogonal Locality Preserving Projections
(OLPP) [5], Locality Preserving Projections with Pairwise
Constraints (PCLPP) [8] and Discriminant Locality Preserv-
ing Projections with pairwise constraints (DLPP) [7]. In the
experiments, 10-fold-cross-validation was performed, were
10% of the data consist the initially labeled images. The ex-
perimental results are shown in Table 1. We notice that in all
three videos the proposed SSMLPP algorithm achieves the
best classification accuracy. The average increase in accuracy
with SSMLPP with respect to the best state of the art subspace
method, DLPP, is 1.53%.

7. CONCLUSIONS

In this paper, a novel method for propagating person iden-
tity labels on facial images extracted from stereo videos was
introduced. The proposed method operates on data with mul-
tiple representations, by calculating a projection matrix that
projects the multiple data representation matrices to a reduced
dimensionality space that preserves the locality information
in the original representations and that satisfies a priori dis-
criminant and pairwise information in the form of pairwise
must-link and cannot-link constraints. Experimental results
on a large data set consisting of facial images extracted from
three stereo movies showed that the subspace representation
through SSMLPP has increased classification accuracy with
respect to other dimensionality reduction techniques.
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