
Visual Information Analysis for big-data using
multi-core technologies.

Nikolaos Mpountouropoulos, Anastasios Tefas, Nikos Nikolaidis and Ioannis
Pitas

Artificial Intelligence and Information Analysis Laboratory, Department of
Informatics,

54124 Thessaloniki, Greece
{tefas,nikolaid,pitas}@aiia.csd.auth.gr

http://www.aiia.csd.auth.gr/

Abstract. The exponential growth of video data produced by surveil-
lance cameras, cell phones and movie post-production creates the need to
process big-data using methods that are able to produce instantaneous
result. Video summarization can be accomplished and represented in sev-
eral manners. The achieved summaries might be a sequence of images or
short videos. In our method, an input video is divided into shots. From
each shot we calculate key frames using three different key frame defini-
tions, to summarize the video data. The contribution of this paper is to
describe how to incorporate techniques that extract on the fly results.

Keywords: video summarization, big-data video analysis,mutual infor-
mation

1 Introduction

Videos are structured according to a descending hierarchy of scenes, shots,
frames. Frame is the fundamental unit of a video. A shot is a consecutive se-
quence of frames captured by a static camera or a moving one. A scene is a
sequence of shots. A scene is defined as a collection of one or multiple shots
focusing in an object or objects that motivate our interest. Video summariza-
tion is the process of detecting the most important and informative frames of
a video in order to create a shorter version of it that is still able to convey the
original message. The representative frames are called key frames. The impor-
tance of video summarization has become really apparent in now days, due to
the exponential growth of video production and consumption over the internet
and security applications. Only at youtube.com 100 hours of video are uploaded
every minute.

Generally shot-cut corresponds to an abrupt frame change. Shot-cuts are clas-
sified in two major categories [1]. In the first category belong the cases where
transitions between the frames are abrupt and the second one includes the cases
of gradual transitions, such as fade in/fade out, dissolve,wipe etc [2]. Shot-cut

2 Visual Information Analysis for big-data using multi-core technologies.

detection is easier to detect in an abrupt change rather than in a gradual tran-
sition. In the case of dissolve the frames of the shot in a video start to fade
out while the next appears and grows clearer as the first one dims. The wipe
happens when one shot replaces another in a different spatial regions of the in-
termediate video frames. The former frames grow using a pattern ,e.g. like a
star, of a special shape until it entirely replaces the latter. A fade in/fade out
is a gradual disappearance of a frame into black and then the black frame fades
into the appearing shot.

Generally shot-cut detection algorithms work by extracting features from
frames, then using a similarity measure to detect them. Features used for shot-cut
detection include color histogram [5],[6], block color histogram, motions vectors,
etc. To measure the similarity between frames using the extracted features is
the second step. The similarity metrics can be the Euclidean distance, the chi-
squared similarity , mutual information, etc.

We studied many standard techniques for detecting shot-cuts and key-frames.
We decided to adopt MI (Mutual Information) for shot-cut detection as men-
tioned in [3]. Using MI values we determine the shots. Key frames are extracted
from these shots using three different key frame definitions. In Section 2 we briefly
describe the adopted shot cut detection algorithm. In Section 3, we describe the
key frame selection process. Experimental results are provided in Section 4. Con-
clusions are drawn in Section 5.

2 MI: Mutual Information

2.1 Definitions and Background

In probability theory the mutual information of two discrete random variables
is a measure that evaluates the mutual dependence of the two. Let X be a
discrete random variable with a set of outcomes AX = {a1, a2, . . . , aN} with
the corresponding probabilities {p1, p2, . . . , pN}. px(x = ai) = pi, pi ≥ 0 and∑

x∈Ax
pX(x) = 1. Entropy of X measures “unpredictability” and can defined

as:

H(X) = −
∑

x∈AX

pX(x) log pX(x) (1)

The joint entropy of two discrete random variables X,Y can be obtained
by:

H(X,Y) = −
∑

x,y∈AX ,AY

pXY (x, y) log pXY (x, y) (2)

where logpXY (x, y) is the joint probability density function for the ran-
dom variables X,Y . The conditional entropy of Y given X (or X given Y
accordingly) is expressed as:

Visual Information Analysis using multi-core technologies for big-data. 3

H(Y |X) =
∑

x∈AX

pX(x)H(Y |X = x) = −
∑

x,y∈AX ,AY

pXY (x, y) log pXY (x|y)

(3)
The mutual information (MI) of the two variables X and Y is defined by:

I(X,Y) = −
∑

x,y∈AX ,AY

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
(4)

According to [3] I(X,Y) in (4) is equivalent to

I(X,Y) = H(X)−H(X|Y) (5)

In our experiments, we have adopted the MI definition in (5).

2.2 Shot-cut detection using Mutual Information

In our approach the MI is calculated separately for each one of the RGB compo-
nents. We normalize each RGB pixel luminosity to gray level from 0, . . . , N −1.
At frame ft three vectors with dimension N created containing the values on
gray level for each pixel. Dividing each element by total number of the pixels of
the frame and averaging them gives pX(x) where AX = {0, 1, . . . , N − 1} con-
tains corresponding probability of each gray-scale pixel. Thus we can calculate
the entropy H(X) using (1).

Between two frames ft, ft+1 three N × N matrices, CR
t,t+1, C

G
t,t+1 and

CB
t,t+1 created containing information on the gray-level transitions between these

frames. Each one of the components for example CB
t,t+1(i, j) with 0 ≤i ≤ N − 1

and 0 ≤j ≤ N − 1 corresponds to the occurrence that a pixel with gray level i
in frame ft has gray level j in the frame ft+1. Dividing by the total number
of the pixels of the video frame we find the joint probability in each matrix
CJPR

t,t+1, C
JPG
t,t+1, and CJPB

t,t+1, that a pixel with gray level i has now gray level j.
For two frames ft, ft+1 the matrix of gray scale joint probability is given by:

CJP
t,t+1 = (CJPR

t,t+1 + CJPG
t,t+1 + CJPB

t,t+1)/3 (6)

Using the expression in (6) we can calculate the conditional entropy men-
tioned at (3). Finally we use the expression (5) to calculate the I(X,Y) for the
two frames.

In order to detect shot-cuts we define a temporal window W size of NW .
Local MI mean values, and the standard deviation of them excluding the current
value It,t+1 at the current window tc is described at [8]:

Itc =
1

NW

∑
t∈W,t̸=tc

It,t+1 (7)

If the quantity Itc−It,t+1 is greater than the double of the standard deviation
of the selected values a shot-cut is detected.

4 Visual Information Analysis for big-data using multi-core technologies.

2.3 Fast implementation of the algorithm

In order to reduce the processing time required for this task, we have devised a
parallel (multi-threaded) implementation of the original algorithm. We decided
to automatically split the video sequences in blocks (non-overlapping subvideos)
and process each block independently in different threads. Furthermore, we have
designed a parallel video reading/decompresing implementation. The adoption
of this operation, further improved the computational speed of the algorithm.

video
Shot-cuts

Read/
Decompress cores

Processing cores
Write result cores

Fig. 1. Processing Cores

The first step for developing this algorithm was to evolve the OpenCV library.
We created a new multi-threading method which can read and decompress the
frames from the compressed video file using all the cores of the current working
station. This way we can define the buffer of the processing frames per core.
For example a buffer value equal to 60 means that each core will decompress 60
frames and write them to memory. Each one of these video-blocks is assigned to
a thread responsible to calculate the MI from one frame to another. We define
a matrix with size equal to the length of the movie.When the threads complete
the calculations, each thread writes to the corresponding position of the matrix,
the results of the corresponding calculations. Combing all these results using an
adaptive thresholding approach we can define the shots of the video.

Visual Information Analysis using multi-core technologies for big-data. 5

3 Key frame Selection

The data entry for this algorithm can be composed of the shots defined from
the previous method. For each shot a key frame will be selected. Key frames
are intended to be informative regarding the corresponding shot. According to
this, a key frame is defined as the one that provides the smallest distance from
the remaining frames in the shot. Three algorithm implementations are available.
These are: distance between frames, distance from the average frame and distance
between frame histograms.

All three of them need to compute distances between frames. For the two first
algorithms, the distance between two frames is the sum of all their corresponding
(having same coordinates) pixel distances. Pixel distances can be computed by
two methods using the distance of the average or the euclidean (9) pixel distance.
The average distance can be defined, where pRt , pGt , pBt is the pixel color RGB
values of the current frame at position (x, y) and pRt+1 , pGt+1 , pBt+1 the next
frame ft+1, at the same position as:

davg = (|pRt − pRt+1 |+ |pGt − pGt+1 |+ |pBt − pBt+1 |)/3 (8)

The average pixel distance is the distance of their average values based on
the RGB values of the pixel. The euclidean distance of two pixels is given by
(9). The third algorithm calculates the distance between the histograms using
correlation, chi-square, intersection and Bhattacharyya distance. Details on these
metrics can be found in [4].

deuc =
√
(pRt − pRt+1)

2 + (pGt − pGt+1)
2 + (pBt − pBt+1)

2 (9)

3.1 Simple Distance of frames

The former algorithm initially computes the distance for each shot frame pair
(that is for frame pairs 1 − 2, 1 − 3, . . . , 2 − 1, 2 − 3, . . .) where the distance
between two frames is defined as the sum of their corresponding (having same
coordinates) pixel distances, as mentioned above. Let xi ∈ RN , i = 1, . . . ,M
be the video frames in vectorized form. Let sj be the key frame for the j-th
shot.According to this we have:

sk = argmin
i

∑
j

∥xi − xj∥2 (10)

After all distances among shot frames are computed, the key frame can be
derived as the one that has the smallest sum of frame distances, meaning that is
the one closest to most other shot frames. The initial implementation of the algo-
rithm was reading-decompressing two frames from the shot calculates their dis-
tance and stores it appropriately. Thus the complexity of reading-decompressing
and comparison was O(n2). We make two significant improvements. We create
a multi-thread version of the algorithm where each shot is being process by one
core. Since the shots are unequal, when a thread finishes a new shot is being

6 Visual Information Analysis for big-data using multi-core technologies.

reassign to it. The reading-decompressing of each shot is done exactly only one
time assuming that the working station has enough memory to fit in the shots
being processed.

3.2 Average Frame

The second algorithm is computationally faster (O(n) instead of O(n2) of
the first method) but less accurate. We can average the frames of the shot to
calculate the average frame of the shot by computing the average value of all
corresponding frame pixel luminosities. The distance from the average frame is
calculated by the Euclidean distance or the average distance as seen:

sk = argmin
i

∥xi − xavg∥2 (11)

where xavg is the ”avegare” frame.
After that, each frame is compared with the average frame of the shot, by

using any type of distance mentioned before. In this case, key frames could be
the ones that are the most similar (least distance) to the average ones. This is
by far the fastest algorithm of the two but slightly less accurate. The complexity
is O(n).

3.3 Frame Histogram Distance

This algorithm follows a similar process to first to produce its key frames, with
the only difference being that the distance between two frames in this algorithm
is not the sum of their corresponding pixel distances, but the distance of their
histograms in RGB color space. This algorithm is the most context sensitive
of the three, and can yield drastically different results from the first two. The
third algorithm we use is distance computation in a histogram level rather than
pixel level, which is more robust to noise and camera movement. The distance
function we use is correlation, chi-square, intersection and Bhattacharyya.

4 Experimental results

In this section we describe experiments conducted in order to illustrate the
decrease of execution time observed by our parallel implementation. We set
the buffer values to 20, 40, 60 frames and change the number of threads for the
MI algorithm as seen at Tables 2,3,4. The experiments were conducted on an
Intel(R) Core(TM) i7-4770 CPU 3.40GHz PC which has 4 physical cores and can
manipulate 8 logical threads. Each core processes a block of frames and writes
the result to the corresponding position of a matrix. When the threads finish,
the matrix contains the MI values for each pair of frames. We used Hollywood
movie Movie1 for the experiments of MI as seen at Table 1. Using four physical
cores the ideal reduction of time will be 75%. According to [7] using the Hyper-
Threading Technology we gain a little more time archiving at 79,72% setting the

Visual Information Analysis using multi-core technologies for big-data. 7

buffer to 60. The rest videos used as input were other Hollywood movies as seen
at Table 1. The metrics for the distance algorithms simple frame distance,average
frame was the average distance of the pixels, while in histogram distance frame
was correlation.

Table 1. Characteristic of movies

Total no.Frames Resolution Duration

Movie1 181764 960x540 2h 6m 21s

Movie2 196224 960x540 2h 16m 24s

Movie3 150361 960x540 1h 44m 31s

Table 2. Experimental results(buf=20) for MI.

Number of Threads 1 2 4 6 8

Elapsed Time 34m 55s 20m 09s 12m 33s 10m 43s 9m 48sec

Decrease in time (%) 42,3% 64,1% 69,4% 72,1%

Table 3. Experimental results(buf=40) for MI.

Number of Threads 1 2 4 6 8

Elapsed Time 33m 09s 15m 36s 9m 36s 8m 27s 7m 28sec

Decrease in time (%) 53% 71,1% 74,6% 77,5%

The algorithms of key frame selection especially the simple distance frame
and Histogram Distance Frame are slower to our standards and takes more than
the real time of the movie to complete. As seen at Table 5 we managed to
achieve an enormous reduction. Among the three of them the best time is the
Average Frame. Although is not as robust as the other two the execution time
is magnitude times faster than the other two as seen at Table(5). With MI and
Average Frame can produce results on the fly.

We try to combine techniques for processing big-data video to accomplish in-
stantaneously execution time. The fastest method for the selection of key frames,
average frame might not be as robust as the others but completes calculation
magnitude times faster. The next step is to examine algorithms to use those key
frames to create a video summarization. The ideal is to adopt the proper algo-
rithms for the creation of summary so that the total time of processing doesn’t
overrun the length of the movie.

8 Visual Information Analysis for big-data using multi-core technologies.

Table 4. Experimental results(buf=60) for MI.

Number of Threads 1 2 4 6 8

Elapsed Time 33m 41s 13m 35s 8m 29s 7m 38s 6m 50sec

Decrease in time (%) 59,68% 74,82% 77,74% 79,72%

Table 5. Time needed for key-frame selection in Movie1.

Simple Distance Frames Average frame Histogram Distance Frame

Single-core 1d 2h 52min 32sec 1h 3m 8sec 2d 1h 49min 33s

Multi-core 4h 59m 25s 32m 36s 9h 7m 11s

Acknowledgment

The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 316564 (IMPART). This publication reflects only the authors views. The
European Union is not liable for any use that may be made of the information
contained therein.

References

1. Weiming Hu, Nianhua Xie, A survey on visual content based video indexing and
retrieval, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS,
vol. 41, no. 6, pp. 797819, November 2011.

2. C. Cotsaces, N. Nikolaidis, and I. Pitas: Video shot boundary detection and con-
densed representation: A review, IEEE Signal Processing Magazine, vol. 23, no. 2,
pp. 2837, March (2006).

3. Z. Cernekova I.Pitas C.Nikou: Information theory-based shot cut/fade detection
and video summarization, IEEE Transactions on Circuits and Systems for Video
Technology, vol.16, January, (2006).

4. Opencv metrics for histograms, http://docs.opencv.org/modules/imgproc/doc/
histograms.html?highlight=comparehist#comparehist

5. S. W. S. HongJiang Zhang, Atreyi Kankanhalli: Automatic partitioning of full-
motion video, ACM Multimedia Syst.,vol. 1, no. 1, pp. 1028, April (1993).

6. Z.Cernekova, C. Kotropoulos, I. Pitas: Video shot segmentation using singular value
decomposition, SPIE Journal of Electronic Imaging, vol. 16, no. 4, December (2007).

Table 6. Shot-cuts and fastest method of key-frames

Shot-cut using (MI) Key frame selection using Average frame Total Time

Movie1 6m 50s 32m 36s 39m 26s

Movie2 9m 33s 35m 13s 44m 46s

Movie3 6m 7s 27m 7s 33m 14s

Visual Information Analysis using multi-core technologies for big-data. 9

7. Chen, Y. K., Holliman, M., Debes, E., Zheltov, S., Knyazev, A., Bratanov, S., ... &
Santos, I.: Media Applications on Hyper-Threading Technology. Intel Technology,
Journal 6, Issue(1) (2002).

8. I. Pitas and A. Venetsanopoulos, Nonlinear Digital Filters: Principles and Applica-
tions. Kluwer Academic, (1990).

