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Abstract. Activity recognition is a complex problem mainly because of
the nature of the data. Data usually are high dimensional, so applying
a classifier directly to the method data is not always a good practice. A
common method is to find a meaningful representation of complex data
through dimensionality reduction. In this paper we propose novel kernel
matrices based on graph theory to be used for dimensionality reduction.
The proposed kernel can be embedded in a general dimensionality reduc-
tion framework. Experiments on a traditional dance recognition dataset
are conducted and the advantage of using dimensionality reduction be-
fore classification is highlighted.
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1 Introduction

Activity recognition is an important and active area of computer vision research.
Video surveillance and video annotation are two fields that use activity recogni-
tion of everyday actions such as walking, running and sitting. Surveys of activity
recognition approaches can be found in [5,11,14]. The importance of generic
activity recognition relies on the fact that it can be applied to many real-life
problems, with most of them being human—centric [4]. An example of the activ-
ity recognition problem is dance recognition [6]. Dance recognition is a difficult
problem, since it involves the movement of the body in a specific way that char-
acterise a specific dance. Dances are performed in many cultures to express ideas
or tell a story, which suggests their importance especially for countries with long
history, such us Greece.

Dance recognition problems usually begin with video recordings and with
labelling a video. In order for those videos to be used in a classifier, features
need to be extracted. A commonly used framework for transferring the problem
from video recording to a feature space, where all data have the same dimen-
sions, is the bag—of-features approach [10]. Such methods for feature extraction
from videos are STIP, TRAJ and ISA which have been proposed in [8,15,9],
respectively.
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Another example of feature extraction is dimensionality reduction used for
transferring a feature space to a lower feature space. Dimensionality reduction is
a commonly used preprocessing step in machine learning, especially when dealing
with a high dimensional space of features which can enhance data separability
[7]. Many methods for dimensionality reduction exist; the most common of them
are embedded in the framework described in [16]. Using the aforementioned
framework we can retain or avoid specific statistical or geometrical properties of
our data. For this reason a graph is created, specifically a k—nearest neighbour
graph.

Graph properties are described extensively in [2]. One of the properties of
a graph, that will be used in this paper, is that if W represents the adjacency
matrix between nodes, where W (i,j) = 1 if nodes ¢ and j are connected and
W(i,j) = 0 otherwise, then the ij-th element of the p-th power of adjacency
matrix, WP(i,j), gives the number of paths of length p between nodes i and j.
This notion can be applied to either directed or undirected graphs and can also
be extended to weighted graphs, W (i, j) € [0, inf). In this paper, we propose the
use of the number of paths between two samples of the dataset as a similarity
that can be embedded in a general dimensionality reduction framework as it will
be explained in the following Sections.

The structure of the paper is as follows: In Section 2 we describe previous
work and state the problem we solve. We then introduce our method for di-
mensionality reduction in Section 3, providing some theoretical background. In
Section 4 we explain the way we conducted our experiments and present classi-
fication results on traditional dance recognition. We also show some interesting
dimensionality reduction projections. Finally we give concluding remarks and
discussion of future work in Section 5.

2 Prior work and problem Statement

Usually, activity recognition datasets consist of videos. Firstly, the bag—of—features
approach [10] is typically performed and later a codeword is created by applying
k-means to the extracted features. The last step is to map each recording video
to a certain codebook and, thus, the original recording can be represented as
a histogram of codewords. Depending on the number of centres of k-means a
different codeword is produced and, hence, a different representation for each
recording is created. Let the recordings represented as histograms of codewords
be the data matrix X.

Techniques for dimensionality reduction have always attracted interest in
computer vision and pattern recognition. Graph embedding [16] provides a gen-
eral framework for dimensionality reduction and many algorithms can be in-
tegrated into this framework. Let an undirected weighted graph G{X, W} be
defined as a vertex set X and similarity matrix W whose entries can be positive,
negative or zero. Also let a diagonal matrix D be constructed as:
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Dy = Wiy, (1)

i#]
and Laplacian matrix as:
L=D-W, (2)

The aim of graph embedding is to find a procedure where desired charac-
teristics between nodes of the graph are preserved and undesired properties of
the data are suppressed after dimensionality reduction. Hence, a penalty graph
is also defined, whose entries are to be suppressed in the new feature space.
Graph embedding framework requires the solution to the generalized eigenvalue
decomposition problem:

LU = IBU, (3)

where L = L, XLX” or KLK and B =I,B, K, XBX” or KBK depending on
the dimensionality reduction algorithm used. After calculating the matrix U, we
choose those eigenvectors that correspond to the smallest eigenvalues of [.

3 Proposed Dimensionality Reduction Method

In the case of LPP [3] and more specifically the Kernel version of LPP, the
substitution is L = KLK and B = KBK. This suggests that the similarities in
the new space will be comparable to the similarities of the original space after
the transformation of the data through the kernel function &(.).

Even though kernel LPP typically uses the RBF kernel, this is not mandatory
and any matrix can be chosen as long as it is a kernel. There are various kernel
functions that can be used; linear, polynomial, RBF and sigmoid are some exam-
ples. Another kind of kernels, are random walk kernels which were first proposed
in [13] and later were used as kernel matrices for semi—supervised learning using
cluster kernels [1] .

Random walk kernel based on [1] is computed in two steps. First, RBF kernel
matrix is computed and then, each value is normalised by the sum of its row.
The resulted matrix can also be seen as a transition matrix of a random walk
on a graph. This suggests probability of starting from one point and arriving
at another. Using a diagonal matrix defined as in equation (1) the transition
matrix has the form of:

P=D"'K. (4)

thus the matrix PP = (D~!K)P? can be interpreted as transition probability after
p steps. Unfortunately, matrix PP is not symmetric, hence it can not be used as
a kernel.
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Another example of random walk kernel is introduced in [12]. Assume that
we have the adjacency matrix W, with W;; = 1 if samples 7 and j are neighbours
and zero otherwise, and the Normalised Laplacian:

L=D LD . (5)
the p—step random walk kernel is computed as:

K = (al — L)?, with a > 2. (6)

In general W has no restriction about the graphs it can be applied to. In addition,
parameter a ensures positive definiteness of K.

Starting from the simplest kernel, which is inner product, we propose a ran-
dom walk kernel for dimensionality reduction. The inner product, expresses the
similarity between i-th and j-th sample and is defined as:

W (i, j) =x/x;. (7)

Let +—th and j—th samples be represented as nodes in an unweighted graph
with W(i,j) = 0 meaning samples are not similar and W (7,j) = 1 meaning
samples are similar.

We may now propose the similarity matrix:

WP =WW .. W. (8)

p times

We can say that WP (i, j) expresses the similarity between i—th and j—th samples
after visiting all possible paths passing from p — 1 in—between similar samples.

Extending the notion of the discrete values of similar and not similar (0 and
1) to continuous values, we define a relaxed definition of a weighted graph which
can take values in [0 — inf), where 0 is the least similar and inf is the most
similar. This way, when two samples’ similarity is computed, more paths are
approachable, since the only paths that are not viable are those that pass from
an intermediate sample that has zero similarity. In reality, every single path is
involved because even though the similarity of two samples can be small, it is
rarely zero. For example, the similarity matrix passing from one intermediate
sample can be computed as W? = XTXXTX.

Without loss of generality, we assume that data matrix has zero mean, hence
XX" = 3, where ¥ is the covariance matrix, thus W? = X7XX also holds.
Moreover, it is straightforward to show that W? = XT3P~1X, with p > 1.

So, WP is a similarity matrix and WP(i, j) expresses the similarity of two
samples beginning from the i—th sample and ending at the j—th sample after
passing through p — 1 intermediate samples. The goal is to connect similar nodes
by several paths. Even if WP is a similarity matrix, this does not necessarily
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mean that it can be used as a kernel matrix. We now prove that apart from W,
which is by definition a kernel matrix, W? is also a kernel matrix.

It is safe to replace W by K since W is positive definite. K has an eigenvalue
decomposition K = UT AU, where U is an orthogonal matrix and A is a diagonal
matrix of real and positive eigenvalues, that is, A = diag(A1, A2,...,Ap). So,
now WP can be written as:

WP =KK...K
—_—

p times
=UTAUUT AUUT ... UUT AU
N~ Y~ SN~
I I I

=UTA...AU

N——

p times
= UTAPU. (9)

Since eigenvalues \; > 0, Vi =1,..., N then A’ >0, Vi = 1,..., N, which leads
to xWPxT > 0,¥x which is the definition of a positive definite matrix. Notice
that no assumptions were made for the original kernel matrix. Thus, in general
every kernel matrix elevated to any power is also a kernel matrix.

Now, WP can safely be used as a Kernel. Moreover, when inner product is
used as the initial kernel matrix, and assuming data have zero mean, we arrive
at an interesting property. The covariance matrix, X, is symmetric and has real
values, so it has an eigenvalue decomposition that can be written as:

> = UDU”. (10)
Hence:
wr =X"xr X
=X"Upr'u’x
=MD" UTX)"(D"z UTX). (11)
So, kernel WP can be calculated differently by multiplying data matrix X by

D"z UT. The calculation of inner product of the transformed data matrix with
itself yields the same results as when using original data and WP.

RBF kernel is defined as:

i =]
K(x;,xj) =€ 27 | (12)
so KP(x;,%x;),p > 1 can be expressed as:
|x’i_xl1 |2 ‘xlpflij‘g

N N
Kp(xi,xj)zz---Ze_ 227 .. 202
5

lp,1

;

2
xj—Xp,; | +“‘+‘xl,p,1 —%j

N N :
S S , (13)
I lp 1
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By examining equation (13) we observe that the distance between two nodes
is relative to the whole structure of the graph, since in order to compute the
distance of two nodes, all the nodes of the graph are taken into account which
resembles a graph based distance. The property we would like to retain is for the
number of all possible paths after p steps to be the same after dimensionality
reduction.

Finally, kernel LPP keeps the similarities between samples the same, after
the dimensionality reduction by using K. Using this notion, we similarly use K?
to keep the similarities after visiting all possible paths passing through p — 1
intermediate samples. In order to achieve this, equation (3) is used to embed our
proposed method to the framework using L = KPLK? and B = KPBK?. Notice
that like kernel LPP our proposed method is unsupervised and the labels of the
data are not required.

4 Experimental Results

We performed classification to a dataset of Greek traditional dances. The dataset
consists of 10 videos of 5 Greek traditional dances, the Lotzia, the Capetan
Loukas, the Ramna, the Stankaina and finally the Zablitsaina. In more detail,
two professional dancing groups were recorded dancing. Each traditional dance
was performed twice, once indoor by one group and once outdoor by another
group. In Figure 1, two frames of two different videos are illustrated.

The 5 recordings of indoor were used for training and the outdoor recordings
were used for testing. In order, to transform the video recordings to feature
vectors we have extracted ISA STIP and TRAJ. Using overlapping clips of 80
to 100 frames we ended up with 78, 113, 110, 95 and 101 clips for each training
video and for each testing video to 102, 107, 110, 106 and 91 clips, resulting to
496 and 516 short sequences overall, respectively. Also we have created a dataset
consisting of only 8 videos out of 10, without the dance Zablitsaina. The different
representations of the traditional dance dataset characteristics are depicted in
Table 1.

(a) Stankaina dance performed by a (b) Stankaina dance performed by
professional group another professional group with dif-
ferent costumes

Fig. 1. Sample Frame of Two Videos.
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Table 1. Representations of Traditional Dances Dataset

Extracted features|Train Samples|Test Samples|Clusters|Classes
isa.10 497 516 10 5
isa.100 497 516 100 5
stip.10 497 516 10 5
stip.100 497 516 100 5
stip.1000 497 516 1000 5
stip.2000 497 516 2000 5
traj.10 497 516 10 5
traj.100 497 516 100 5
traj.1000 497 516 1000 5
isa4.100 396 425 100 4
isa4.1000 396 425 1000 4

All representations were scaled to the interval [0,1]. We conducted experi-
ments using SVM with the linear kernel and the RBF kernel. The evaluation of
parameters was performed by using grid search of 5—fold cross validation. Us-
ing the best parameters found on training set, we trained once more using the
entire training dataset in order to predict the classes of the test set. More specif-
ically, we trained with exponentially growing sequences of C' € {27° ... 215}
and v € {271%,...,23}. Obviously, inner product uses only parameter C' and the
RBF kernel uses both parameters C and ~.

Apart from SVM, we also need to choose a kernel for the dimensionality
reduction method that was proposed. We chose to evaluate dimensionality re-
duction using the kernels as described in equations (8) and (13). In addition,
our proposed method requires the selection of the parameter p. Thus, we used
a procedure for finding automatically the parameter p similarly to grid search.
Assume, we want to find the parameter p when our data is projected onto a
2—dimensional space. We produce all different projections of original data using
p={1,...,11}, then for each projection we perform grid search, looking for pa-
rameters of the SVM, while we also keep the one of 11 projections that attained
the best performance on the grid search.

As illustrated in Tables 2-5, the proposed dimensionality reduction method
improves the performance of SVM. For the recognition of the 5 traditional
dances, regardless of which features were extracted (ISA STIP and TRAJ),
and also regardless of which kernel was used for classification the best SVM
result attained was 51.74%. On the other hand, projecting data first to a lower
space and then using SVM the best classification performance was 58.33%. More-
over, in the smaller dataset of 4 traditional dances, the best result, using SVM
was 63.53% but using our proposed dimensionality reduction technique before
classification improves classification accuracy to 89.18%. This means that the
structure of the data can be represented in a lower dimensional space more ef-
fectively. For example, in Figure 2 some projections are illustrated, highlighting
the structure of data with different values of p. It is obvious that different val-
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Table 2. Inner Product SVM + (Inner Product)?

Dimensions

SVM 1 2 3 4 5 6 7 8 9

Dataset 10

isa.10
isa.100
stip.10
stip.100
stip.1000
stip.2000
traj.10
traj.100
traj.1000

23.64
40.12
32.36
33.72
36.05
30.43
32.17
32.75
44.19

33.563 29.65 30.81 30.81 29.46 26.74 24.22 17.05 13.76
57.36 33.53 40.31 33.33 49.61 39.53 23.45 34.30 32.95
39.15 40.12 34.50 34.11 34.88 34.88 35.08 33.53 34.69
36.43 36.24 32.75 37.60 35.66 35.27 31.40 32.17 22.48 23.06
34.30 33.72 37.60 30.04 30.23 29.65 29.65 29.65 29.07 35.66
35.66 33.14 28.68 28.29 28.29 32.56 34.11 37.79 38.18 41.28
19.77 20.93 28.29 29.84 32.36 29.84 30.23 31.40 31.40 30.81
20.16 27.71 34.50 30.81 33.72 34.50 34.50 35.47 36.63 37.02
27.52 25.19 41.47 43.22 43.41 43.80 35.85 38.57 40.89 39.92

13.57
34.30
34.69

isa4.100
isa4.1000

54.59
63.53

30.12 37.65 48.94 56.47 68.71 71.29 76.47 31.06 31.06 77.18
49.18 63.76 43.29 72.00 83.06 89.18 85.41 85.65 82.82 82.59

Table 3. RBF SVM + (Inner Product)?

Dimensions

SVM 1 2 3 4 5 6 7 8 9

Dataset 10

isa.10
isa.100
stip.10
stip.100
stip.1000
stip.2000
traj.10
traj.100
traj.1000

40.70
51.74
27.13
21.32
22.09
22.67
24.22
20.74
22.67

40.50 34.11 31.59 27.33 24.61 22.09 29.65 26.94 21.51
50.58 54.26 50.97 58.33 43.22 38.18 27.91 27.52 27.52
35.08 34.69 30.04 32.36 34.11 37.21 33.53 31.40 33.33
40.89 37.21 31.59 29.46 27.91 27.33 32.56 29.65 28.88 32.56
26.94 34.30 32.17 28.68 29.84 28.29 27.71 29.26 29.07 23.26
21.71 28.29 29.65 29.46 31.01 31.78 29.26 25.19 31.01 32.36
19.19 16.67 15.50 13.76 13.18 30.43 36.82 36.63 36.63 36.63
21.51 15.12 22.09 20.54 20.74 21.71 21.12 23.06 25.97 28.88
23.26 33.33 31.59 36.63 35.27 37.40 39.92 39.92 35.08 34.69

21.32
18.60
35.66

isa4.100
isa4.1000

54.82
30.82

21.88 24.00 49.88 65.18 24.24 50.59 52.94 50.59 50.12 49.18
49.41 62.82 48.71 61.41 60.71 82.82 82.12 81.88 78.59 79.06

Table 4. Inner Product SVM + (RBF)?

Dimensions

SVM 1 2 3 4 5 6 7 8 9 10

Dataset

isa.10 23.64| 12.98 20.16 20.93 20.93 13.76 20.16 27.71 26.94 26.94 26.74

isa.100
stip.10
stip.100
stip.1000
stip.2000
traj.10
traj.100
traj.1000

40.12
32.36
33.72
36.05
30.43
32.17
32.75
44.19

43.99
39.73
37.21
34.30

35.47
37.21
35.47

36.24 37.21

36.05 38.18

31.98
31.78
20.93

30.62
36.24
35.85

49.81
33.14
36.43

48.26 54.46 37.98
35.27 35.85 36.24
35.27 36.82 35.66
36.63 36.43 36.43
29.84 31.01 29.46 30.04
32.95 31.01 30.43 31.01
34.69 37.40 36.82 34.69
23.84 29.46 34.11 26.94

38.37 44.77 43.99 57.17
39.34 36.82 36.43 36.82
42.44 44.96 42.25 32.36
36.63 28.68 24.81 20.54
29.65 26.16 29.65 30.23
34.69 34.88 32.17 31.59
34.11 33.14 30.62 28.88
27.91 26.16 26.94 25.19

isa4.100
isa4.1000

54.59
63.53

73.88
78.59

70.59
74.35

68.00 77.88 54.35 56.47
50.59 68.71 63.06 64.94

56.47 57.18 57.41 57.88
82.12 80.00 83.29 88.71
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Table 5. RBF SVM + (RBF)?

Dimensions
Dataset | SVM 1 2 3 4 5 6 7 8 9 10

isa.10 40.70| 9.69 19.96 34.11 17.83 17.64 20.35 18.80 18.60 23.64 28.49
isa.100 | 51.74| 29.65 31.01 52.13 45.35 49.42 24.42 48.26 25.00 27.71 35.85
stip.10 27.13|35.47 33.53 31.01 33.14 32.95 19.96 17.83 29.26 33.72 32.95
stip.100 | 21.32| 33.33 37.98 33.91 34.88 34.69 30.04 30.43 31.78 31.78 30.81
stip.1000| 22.09| 36.43 36.05 33.91 36.82 32.95 29.07 22.09 29.65 25.97 19.96
stip.2000| 22.67| 24.22 23.84 36.43 37.21 30.62 27.13 26.74 22.87 30.23 29.26
traj.10 24.22] 28.29 21.71 25.78 19.57 24.22 25.97 30.81 31.40 26.16 30.43
traj.100 | 20.74| 34.30 34.30 38.18 36.43 37.40 32.56 35.66 35.27 32.75 29.26
traj.1000| 22.67| 33.72 25.58 28.10 34.30 32.95 34.11 33.53 34.11 32.56 31.01

isa4.100 | 54.82|73.65 64.00 64.94 72.71 34.82 32.24 29.18 29.65 24.47 30.35
isa4.1000| 30.82| 77.88 38.59 64.47 68.00 62.12 64.71 70.82 78.82 78.59 69.65

Fig. 2. isa4.100 projections using (Inner Product)? with different values of p
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ues of the parameter p of the proposed kernel result to significantly different
representations with varying discriminality among the classes.

5 Conclusions

A novel kernel has been proposed which can be embedded to a dimensionality
reduction framework. The proposed kernel produces representations that high-
light the separability between classes. We performed classification using SVM as
a classifier to a traditional dance recognition dataset and the advantage of us-
ing dimensionality reduction, before classifying, is highlighted. In addition, some
interesting projections of the data were given. Future work can be focused on
performing dimensionality reduction using different initial kernels.
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