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Abstract—Kernel Methods are algorithms that are widely used,
mainly because they can implicitly perform a non-linear mapping
of the input data to a high dimensional feature space. In this
paper, novel Kernel Matrices, that reflect the general structure
of data, are proposed for classification. The proposed Matrices
exploit properties of the graph theory, which are generated using
power iterations of already known Kernel Matrices and three
approaches are presented. Experiments on various datasets are
conducted and statistical tests are performed, comparing our
proposed approach against current Kernel Matrices used on
support vector machines. Also, experiments on real datasets for
folk dance and activity recognition that highlight the superiority
of our proposed method, are provided.

I. INTRODUCTION

In machine learning, similarities or dissimilarities are used
by many algorithms. In computer vision, tangent distance [1],
earth mover’s distance [2], shape matching distance [3] pyra-
mid match kernel [4] are all algorithms that use similarities
between images, which, in turn, are used for image retrieval
and object recognition. Likewise, in bioinformatics there are
popular algorithms used to compute similarities for protein
classification [5], [6]. For more details on similarity based
classification refer to [7].

Similarity matrices can be created by applying any known
metric to data. Most common metrics used are inner product
and cosine similarity. Moreover, a similarity matrix S can be
used as a Kernel Matrix K by simply replacing K with S,
ignoring the fact that S might be indefinite. This is not always
correct, therefore, there are many sophisticated methods to
modify S for it to be positive definite such as denoise, flip,
diffuse and shift. A detailed discussion about transforming
indefinite matrices into Kernels can be found in [8].

Kernel methods [9], [10] have received increased attention,
particularly due to the popularity of the Support Vector Ma-
chines. Kernel functions can be used in many applications as
they provide a transformation from linearity to non-linearity
and can be expressed in terms of dot products, using the kernel
trick. The most common kernels are the linear kernel and the
Gaussian kernel, which is a non-linear kernel.

Another representation, based on pairwise similarities be-
tween samples, is a graph. Graphs provide a general sense
of similarity between objects that reflect the whole structure
of data. For example in dimensionality reduction, often, a
k—nearest neighbour graph is created [11], [12]. However,
this operation on graphs is not applicable to classification

algorithms that use all pairwise distances, such as SVM.
Ideally, we would like to have a fully connected graph, so
that each pair of samples is connected and has a similarity
value.

In addition, graphs have many properties and are used
widely [13]. One of the properties of a graph, that we will
use in this paper, is that if W represents the adjacency matrix
between nodes, where W (i,j) = 1 if nodes ¢ and j are
connected and W (i,j) = 0 otherwise, then p-th power of
adjacency matrix, WP(i,j), gives the number of paths of
length p between nodes ¢ and j. This notion can be applied to
either directed or undirected graphs and can also be extended
to weighted graphs, W (4, j) € [0, inf].

We propose applying the aforementioned property of a
graph to both linear and nonlinear Kernel matrices for classi-
fication, using Support Vector Machines as classifier.

The structure of the paper is organised as follows: In
section II, we state the problem we solve. We, then, intro-
duce our method for classification in section III, providing
some theoretical background, and then, we describe our three
proposed approaches. In section IV, we explain the way we
conducted our experiments and present classification results
to various datasets. We also provide classification results to
activity recognition based datasets. Finally, we give concluding
remarks and discussion of future work in section V.

II. PROBLEM STATEMENT
Assume a supervised binary—class, classification problem

with data matrix, X = [x1,Xs,...,Xy], where x; € R”
and y; € {—1,1} indicates the class to which the sample x;
belongs, where ¢ = 1,..., N. N is the number of samples and

D is the dimension of data. Suppose we are given pairwise
similarities of the samples in kernel matrix K.

The SVM is a binary classifier based on structural risk
minimization [14]. From [15] the definition of the quadratic
programming problem for support vector learning can be
expressed as:
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where C' is a penalty parameter. Notice that samples do not
participate in maximizing equation (1); only pairwise similari-
ties estimated by the kernel between samples are necessary. By
exploiting the kernel trick [9] we can use a non—linear function
®(x;) to represent the samples in a higher dimensional space,
where they can be linearly separable.

III. PROPOSED METHOD

There are various kernel functions that can be used - most
common are linear, polynomial, RBF and sigmoid. Moreover,
there are other kind of kernels, such as random walk kernel,
which was first proposed in [16] and was later better defined
as kernel matrix for semi—supervised learning using cluster
kernels in [17].

Random walk kernel based on [17] is computed in two steps.
First, RBF kernel matrix is computed and then, each value is
normalised by the sum of its row. The resulted matrix is a
transition matrix of a random walk on a graph, that defines the
probabilities of starting from one point and arriving at another.
Using this approach, a diagonal matrix which is defined as
D=5 j K, can be used to construct the transition matrix
as P = DK, thus the matrix P? = (D~'K)? suggests
transition probability after p steps. Unfortunately, matrix PP
is not symmetric, hence it can not be used as a kernel for a
SVM classifier, but a trick is provided in [17] to transform it
to a positive definite matrix.

In addition, a family of kernels on graphs, based on the
notion of regularization operators, are defined in [18], where
another example of a random walk kernel is introduced. Let an
unweighted graph G consist of a set of vertices numbered from
1 to N that represent the data matrix and its adjacency matrix
W, with W;; = 1 if samples 7 and j are neighbours. Let D
be the same diagonal matrix as before. The Laplacian of G is
defined as L = D — W and the Normalised Laplacian is L=
D~ >LD 2. A kernel matrix, the p—step random walk kernel,
is introduced and is computed as K = (aI—L)?, with a > 2
in [18]. Keep in mind that in general, W is not restricted and
can be extended to weighted graphs allowing W;; € [0, inf].
Also, notice that parameter a ensures positive definiteness of
K.

As discussed, random walk kernels are already known,
however, no classification performance results have ever been
published. A possible reason may be the difficulty in determin-
ing the selection of p and positive definiteness, which requires
tricks in order to be used as a kernel to a SVM. We now present
how a random walk based kernel can be used to classification,
using a SVM classifier.

Our approach requires a known kernel to be computed is in
classification using precomputed kernels with a SVM. In this
paper, we will use a linear kernel, more specifically the inner
product, and a non linear kernel, in our case the RBF kernel,
however, any known kernel could be used.

A. Linear Kernel

A similarity matrix W, expressing the similarity between
i-th and j-th sample, can be defined as the inner product:

W (i, j) = x] x;. )

Let ¢—th and j-th samples be represented as nodes in an
unweighted graph with W (i, j) = 0 meaning samples are not
similar and W (4, j) = 1 meaning samples are similar.

We may now propose the similarity matrix:

WP = WW...W. 3)

p times

We can say that WP(i, j) expresses the similarity between i—
th and j—th samples after visiting all possible paths passing
from p — 1 in-between similar samples.

Extending the discrete values of similar and not similar (0
and 1) to continuous values, we define a relaxed definition of
a weighted graph which can take values in [0 — inf], where 0
is the least similar and inf is the most similar. This way, when
two samples’ similarity is computed, more paths are available,
since the only paths that are not viable are those that pass
from an intermediate sample that has zero similarity value. In
reality, every single path is involved because even though the
similarity of two samples can be small, it is rarely zero. For
example, the similarity matrix passing from one intermediate
sample can be computed as W? = XTXX7X.

Without loss of generality, let’s assume that data matrix has
zero mean, hence XX7 = ¥, where ¥ is the covariance
matrix, thus W2 = XTXX also holds. Moreover, it is
straightforward to show that W? = X7XP~1X, with p > 1.

So, WP is a similarity matrix and WP (i, j) expresses the
similarity of two samples beginning from the i—th sample
and ending at the j—th sample after passing through p — 1
intermediate samples. The aim is that for similar nodes to
be connected by several paths. Even if WP is a similarity
matrix, this does not necessarily mean that it can be used as
a kernel matrix. We now prove that apart from W, which is
by definition a kernel matrix, WP is also a kernel matrix.

It is safe to replace W by K since K is positive definite.
K has an eigenvalue decomposition K = U7 AU, where U
is an orthogonal matrix and A is a diagonal matrix of real and
positive eigenvalues, that is, A = diag(\1, A\a,...,Ap). So,
now, WP can be written as:

WP =KK...K
——
p times
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Since eigenvalues \; >0, Vi=1,...,N then A’ >0,
Vi=1,...,N, which leads to xWrxT > 0, Vx, which is
the definition of a positive definite matrix. Notice that no



assumptions were made for the original kernel matrix. Thus,
in general, every kernel matrix elevated to any power is also
a kernel matrix.

Now, WP can safely be used as a precomputed kernel
matrix in SVM. Moreover, when inner product is used as
the initial kernel matrix, assuming data have zero mean, we
arrive at an interesting property. The covariance matrix, X,
is symmetric and has real values, so it has an eigenvalue
decomposition that can be written as:

¥ = UDU". )
Hence:
wr =X"xr X
=X"upr'u’x
=MD" UTX)’(D"> UTX). (6)
So, kernel W? can be applied differentlylby transforming the
data. Multiplying data matrix, X, by D“z U” and using inner
product with transformed data, yields the same results as when
using original data and WP. Now, let’s examine another initial
kernel matrix.
B. Non Linear Kernel
Another popular kernel is RBF kernel which is defined as:
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Examining equation (8) we see that the distance between
two nodes is relative to the whole structure of the graph,
since, in order to compute the distance of two nodes, all the
nodes of the graph are taken into account, which resembles
a graph based distance, and then transforming it to similarity
accordingly.

C. Available approaches

Kernel based classifiers, like SVM, use the similarities of
each pair of samples to train and then to test, rather than using
the original space in which the samples belong. In order to use
the precomputed kernel in SVM, we must take into account
that training and test samples are treated differently. Assume
kernel matrix K consists of similarities of all data. Hence its
size is (N7 + N¢) X (Np 4+ N;) where Ny is the number
of samples for training purposes, and N, is the number of
test samples of which their class needs to be predicted. Also,
assume that samples of pairwise similarities inside K are in
the following order: training samples and then test samples,
so now, using submatrices, K can be defined as:

T
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The matrix A (Np x Nr) is used for building a model that
satisfies equation (1) and the similarity matrix C (N; X Np),
which shows the similarities between test samples and training
samples, is used for predicting the class of test samples. That
being said, one could wonder how to treat samples when a
kernel is elevated to some power. We may now propose three
ways to treat test samples, each one based on the fact that we
can control the available similarity paths, and each way treats
samples differently.

1) Pass through All (PA): In this approach, we assume that
all data are available, with some of them being treated as
training samples, while others as test samples. Every time a
new test sample’s class needs to be predicted, we train a new
model based on all samples, including the test samples, by
computing KP. Then, we choose the submatrix of KP? that
consists of the first Nt rows and first N7 columns to be used,
in order to build the SVM model. Finally, the matrix used to
predict the test samples’ class, consists of the rows [N +
1,..., Ny + N¢] and first Ny columns.

2) Pass through Train (PT): This is similar to (PA), only
that this approach is more flexible, since the kernel matrix
used for training does not require test samples in order to
be computed. First, we define another matrix, the restriction
kernel matrix K,, which is computed as K is computed,
but replacing the rows of K corresponding to test samples
with zeros. This way, we allow similarity paths that can pass
exclusively through training samples. Then K?~! is computed
and finally KK?~1 is used. In the matrix that consists of first
Nt rows and first Ny columns of KKﬁ,’*l, which is used
for the training procedure, test samples are not involved, this
way computing the power of the kernel is ready to be used
for out-of-samples classification and thus is more flexible than
(PA).

3) Pass through Support Vectors (PSV): This is a more
sophisticated approach and requires one additional step. Using
a kernel matrix which consists of only the similarities between
training samples, a SVM model is created. The next step
is to treat the training samples that were support vectors
differently from those samples that were not. The difference is
that only similarity paths passing through support vectors are
computed. Similarly to (PT), the restriction matrix is computed
by replacing rows of the test samples as well as the rows
of training samples that were not support vectors with zeros.
Notice that, even though non support vectors do not contribute
to similarity paths, they are taken into account when the labels
of test samples need to be predicted.

IV. EXPERIMENTS

In this section we show the results from various datasets,
taken from UCI [19]. The last three datasets were artificially
created, as well as Balancel and Balance3 whose method
of creation will be explained later on. The method used to
perform our experiments is as follows: we split each dataset
into train and test samples by doing 5 x 2 cross validation.
The final test classification result is computed by averaging



TABLE I: Inner product — Various Datasets

Dataset Samples | Dimensions | Classes Inner Product - Grid Search Inner Product - Best power
) ) T ) simple PA PT PSV simple PA PT PSV
australian 690 14 2 85.42 85.45 85.42 85.39 85.42 85.51 85.51 85.62
diabetes 768 8 2 76.88 76.88 76.88 76.88 76.88 76.80 76.80 76.80
liver-dis 345 6 2 68.00 68.17 67.94 66.78 68.00 68.69 68.69 68.69
mamographic 961 5 2 81.50 81.50 81.50 81.50 81.50 82.02 82.02 82.02
PlanRelax 182 12 2 71.43 71.43 71.43 71.43 71.43 71.43 71.43 71.43
habberman 306 3 2 73.46 73.46 73.46 73.46 73.46 73.53 73.53 73.53
Iris 150 4 3 96.80 97.20 97.20 96.40 96.80 98.00 98.00 97.73
Balancel 400 2 3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Balance 625 4 3 91.62 90.85 91.23 91.62 91.62 91.36 91.36 91.36
Balance3 729 6 3 93.42 93.42 93.42 93.42 93.42 93.42 93.42 93.42
Ecoli 336 7 8 86.14 86.08 86.14 86.14 86.14 86.50 86.50 86.50
halfmoon 800 2 2 83.83 83.58 83.58 83.47 83.83 83.75 83.75 83.75
cocentral 685 2 3 50.80 66.10(*)  65.96(*)  66.51(*) 50.80 66.10(*)  66.10(*)  66.57(*)
swissroll 1600 3 4 75.66 77.01 77.01 76.85 75.66 77.45 77.45 77.12
Wins/Ties/Losses - 5/6/3 3/8/3 3/7/4 - 8/3/3(*) 8/3/3(*)  8/3/3(*)

TABLE II: Heat Kernel — Various Datasets

Dataset Samples | Dimensions | Classes simple Heat Ker;zl - Grid S;%rch PSV simple Heat Kegl;l - Best povPv?rr PSV
australian 690 14 2 85.04 85.36 85.51 85.39 85.04 85.83 86.00 85.56
diabetes 768 8 2 75.81 75.70 75.68 75.47 75.81 76.69 76.56 76.56
liver-dis 345 6 2 69.74 69.85 68.46 69.74 69.74 70.55 70.66 70.03
mamographic 961 5 2 80.94 81.44 81.37 81.08 80.94 81.50 81.73 81.02
PlanRelax 182 12 2 70.22 69.56 70.44 71.65 70.22 71.54 70.88 71.43
habberman 306 3 2 74.38 74.51 74.57 74.70 74.38 74.38 74.05 73.73
Iris 150 4 3 95.47 95.20 95.07 96.00 95.47 95.33 95.47 96.27
Balancel 400 2 3 94.55 99.75(*)  99.75(*) 94.55 94.55 100.00(*) 100.00(*) 94.55
Balance 625 4 3 92.13 96.64(*)  96.58(*) 92.13 92.13 97.41(*) 97.28(*) 92.07
Balance3 729 6 30| 93.03 || 98.79¢*) 99.04(*)  93.03 ||| 93.03 98.85(*)  99.09(%)  93.03
Ecoli 336 7 8 86.37 86.08 85.96 86.13 86.37 86.08 86.08 86.08
halfmoon 800 2 2 99.97 99.97 99.97 99.97 99.97 100.00 100.00  100.00
cocentral 685 2 3 100.00 100.00 100.00  100.00 100.00 100.00 100.00  100.00
swissroll 1600 3 4 98.29 98.16 98.26 98.20 98.29 98.31 98.31 98.31
Wins/Ties/Losses - 77215 77215 5/5/4 - 11/1720%%)  1072/2(**) 8/3/3

all ten performances. All random splits are kept the same for
all algorithms to ensure fairness.

The effectiveness of a SVM model depends on the param-
eters used for training. The most commonly used parameter
selection process is grid search. More specifically, we trained
with exponentially growing sequences of C' € {27°,... 215}
and v € {2715,...,23}, where v = . Obviously, inner
product uses only parameter C' and the RBF matrix uses
both parameters C' and . As it is typically performed, each
combination of parameter choices is checked using cross
validation (in our case 5 fold cross validation). Finally, the
parameters with best cross-validation accuracy are selected.
Again, all random splits are kept the same for all algorithms
to ensure fairness. The final model, which is used for testing
and for classifying new data, is then trained on the whole
training set, using the selected parameter as described in [20].

Moreover, in our proposed method, parameter p needs to be
selected. We use the same process for parameter selection as
before, but add the sequence of p € {1,2,...,7}. Notice that
when p = 1 the kernel matrices used do not change and the
process is the same as using the simple SVM. Thus, it could
be said that simple SVM is a specific parameter selection of
our method.

Another issue we have to address is that most optimization

libraries are sensitive to the range of values in the kernel
matrix. The method we used for normalizing the kernel matrix
is described in [21] and is computed as:

_ KP (x4, %;)

VEP(xi, %) KP (%, ;)
Be aware that the kernel normalization process is performed
on KK?~! which in all three methods, are square, symmetric
and their diagonal values are non-zero.

In addition, some datasets have more than 2 classes, which
transforms the problem from a binary classification to multi-
class classification problem. Multiclass problems are treated as
a one versus one problem by building k(k — 1) /2 binary-class
SMYV models, where k is the number of classes.

Balance, as described in [19], is generated as 4 features,
taking values from 1 to 5 resulting in all possible combinations
of 5* = 625. The class for each sample is computed by
comparing the product of the first two features to the product
of the last two features. The result of this comparison has three
outcomes, either the product of first two features is bigger,
equal, or smaller than the product of the last two features,
resulting in assigning the sample to a class, depending on the
outcome. Extending this notion to 2 features and 6 features
we created Balancel and Balance3 respectively. In Balancel,
two features take values from 1 to 20 for all combinations of

(10)
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202 = 400, and in Balance3 six features take values from 1 to
3 for all combination of 3% = 729. The classes of samples are
again computed by comparing the product of their features. In
Balancel the two features are compared to each other, while
in Balance3 the product of the first three features is compared
to the product of the last three features.

Observing the overall performances in Table I and II, we can
say that the grid search does indeed perform slightly better.
Moreover, using the overall performance of each algorithm
we compare each proposed method against simple SVM as
described in [22] by using both the Wilcoxon test and the
sign test. If the best power p of the kernel is used, then all of
our approaches have better performance than simple SVM in
both kernels. Using the aforementioned statistical tests, with
95% confidence, the difference of PA and PT with heat kernel
from simple SVM is statistically significant. In inner product,
using the Wilcoxon test, there are statistical differences for all
proposed approaches against simple SVM.

Moreover, we performed the 5 x 2cv classification statistical
test as described in [23] for all datasets and found that the
there are statistically significant differences in performance in
dataset cocentral and in all three datasets of Balance. In all
of our proposed methods, the statistical test value was over 9,
which is larger than 4.74 that Dietterich suggests in order for
the difference to be statistically significant.

Now, let’s compare the computation complexity of our
method against simple SVM. Generally, the computation com-
plexity of SVM is O(n?®) [24]. In addition, the computation
of matrix multiplication theoretically is O(n2373) [25], even
though we could perform p—1 matrix multiplications with cost
O((p — 1)n?37), in practice, we find the power of a matrix
differently. Due to the fact that, in our approach, we generally
elevate the matrix to many different powers, in practice it is
faster to break kernel matrix K to its eigenvalue decomposition
K = UDUTY with complexity cost O(n?) and then apply the
property KP = UDPU? which can easily be computed.

So the main difference of simple SVM against our proposed
method is the added cost of multiplying the matrix. We can
say that the complexity cost is O(n® 4+ n?) for approaches PA
and PT while for PSV is O(n® + n® + n?) since, in the latter
approach, the knowledge of which samples are support vectors
is required. So we can safely state that our approaches have the
same order of computation complexity with the simple SVM.

A. Application to Folk Dance and Activity Learning

Apart from classic datasets, we used some real world
classification problems. We include some activity based clas-
sification datasets, in each of which people perform various
activities, which result in a dataset that is multilabeled. How-
ever, the problem we selected to solve is that of identifying the
activity a person performs. Every dataset can be represented
by a number of different dimensions, which is concatenated
to its name, and more information about these datasets can be
found in [26] and [27].

In order to split the dataset into training and testing sets,
we created P folds, where P is the number of people in

each dataset. In each fold we use the activities from one
person for the testing set and the remaining activities, from the
remaining P — 1 persons, were used for training. Performing
the aforementioned splitting method p times results in an
overall performance by averaging the performances of each
testing set.

More so in the linear kernel and less so in heat kernel
used for comparing, we can see in Tables IIl and IV that
our method is superior to simple SVM. The form of data
can be complex, and the simple distance of the data does not
reflect the whole structure of the data. Our method has more
effectively captured the structure of data, and attains generally
superior classification results.

In addition, we have used a folk dances dataset. The goal of
dance recognition is to identify which dance was performed.
The dataset description can be found in [28]. Again, we can
see in Tables V and VI that our proposed kernel improves the
performance.

V. CONCLUSION AND FUTURE WORK

In this paper we aim to reintroduce random walk kernels,
and prove that they can be used in classification. We have
provided some mathematical foundation for how this can be
simply used in similarity based classifiers and, finally, we have
discussed some interesting properties. We also have explained
how train and test samples in SVM classifier can be treated
in three different ways. This is contingent on the fact that we
can control the available similarity paths. Experiments have
been conducted on different kind of datasets including activity
recognition based datasets, and results look promising.

Future work will be focused on finding new ways of
handling training and testing samples by controlling available
similarity paths.
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