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ABSTRACT

The rapid development of social media has led to a surge of interest

in multimedia recommendation. Several recommender systems have

been developed, but achieving a satisfactory efficiency or accuracy

still remains an open problem. In this paper, a novel multi-reference

image recommendation system is proposed based on a unified hy-

pergraph. Relevant images from a large pool are recommended to

a reference user or a reference geo-location. In addition to that, the

hypergraph ranking problem is enhanced by enforcing group spar-

sity constraints. By adjusting the different weights associated to

the object groups, we control each object group effect in the recom-

mendation process. Experiments on a dataset crawled from Flickr
demonstrate the merits of the proposed method.

Index Terms— Image Retrieval, Recommender systems, Hy-

pergraph, Group Sparsity Optimization

1. INTRODUCTION

Nowadays, we witness a growing research interest in multimedia

recommendation. Various photo sharing websites like Flickr1 or

PicasaWebAlbum2 have become popular, augmenting content-

based image recommendation with social media information. Users

of these sites, not only upload photos, but also create photo gal-

leries, join into user communities, establish friendships, and insert

tags and geo-tags indicating the geo-location of a specific photo.

These additional sources of information are proved very useful, be-

cause ranking based solely on the similarity of image visual features

usually yields unsatisfactory results due to the existing semantic

gap. Clearly, the overwhelming number of uploaded images, that is

growing exponentially, makes the need for efficient recommender

systems indisputable.

During the past decade, many works were focused on image re-

trieval based on text and content [1]. In [2], retrieval was based on

matching low-level features, then building clusters and finally find-

ing the most similar images by comparing intra-cluster similarity

distances. A randomized data mining method was proposed in [3],

in order to find clusters of images with spatial overlap using the

min-hash algorithm. By selecting an image region containing a spe-

cific object, James Philbin et al. [4] proposed a query-based method

whose performance was enhanced by adding a spatial verification

stage. Moreover, many works exploited the geo-location informa-

tion contained in the metadata. In [5], images were first grouped ge-

ographically and then visually forming an image clustering scheme.

1http://www.flickr.com
2http://picasaweb.google.com

Kennedy et al. [6] demonstrated image search results for landmarks

using both context and content-based tools.

Here, a novel approach to image recommendation problem is

proposed, using unified hypergraphs [7–12] and group sparsity. Hy-

pergraphs consist of a set of vertices made by concatenating different

kind of objects (images, users, social groups, geo-tags, tags) and hy-

peredges linking these vertices. This way, the existing multi-link

relations between the vertices are represented. By fully exploiting

the information provided by social media, hypergraphs are demon-

strated to outperform existing methods that are based only on visual

image features [2, 9] or graph-based methods, which model only the

pairwise relations between the images. Motivated by these findings,

we demonstrate that the inclusion of user friendship and user group

relations on the top of image-related metadata and image similar-

ity increases the efficiency of personalized image recommendation.

The hypergraph ranking is also enhanced by enforcing group sparsity

constraints. This way, the set of objects is split into different object

groups (images, users, social groups, tags, geo-tags) and each object

group effect in the recommendation process is controlled separately,

by assigning them weights.

2. GROUP SPARSE REGULARIZATION FOR RANKING

ON A HYPERGRAPH

In the following, | · | denotes set cardinality, ‖.‖2 the ℓ2 norm of a

vector and I is the identity matrix of compatible dimensions. A hy-

pergraph is a generalization of a graph whose edges connect more

than two vertices. Let G(V,E,w) denote a hypergraph with set

of vertices V and set of hyperedges E to which a weight function

w : E → R is assigned. The vertex set V is made by concatenat-

ing sets of objects of different type (images, users, social groups,

geo-tags, tags). These vertices and hyperedges form a |V | × |E|
incidence matrix with elements H(v, e) = 1 if v ∈ e and 0 oth-

erwise. Based on H, the vertex and hyperedge degrees are defined

as δ(v) =
∑

e∈E w(e)H(v, e) and δ(e) =
∑

v∈V H(v, e), accord-

ingly. The following diagonal matrices are defined: the vertex degree

matrix Du of size |V |×|V |, the hyperedge degree matrix De of size

|E| × |E|, and the |E| × |E| matrix W containing the hyperedge

weights.

Let A = D
−1/2
u HWD−1

e HTD
−1/2
u , then L = I −A is the

positive semi-definite Laplacian matrix of the hypergraph. The ele-

ments of A, A(u, v), indicate the relatedness between the objects u

and v. In order to compute a real valued ranking vector f ∈ R
|V |, we

minimize Ω(f) = 1
2
fTLf , requiring all vertices with the same value

in the ranking vector f to be strongly connected [12]. The afore-

mentioned optimization problem was extended by including the ℓ2
regularization norm between the ranking vector f and the query vec-



tor y ∈ R
|V | in music recommendation [11]. The function to be

minimized is expressed as

Q̃(f) = Ω(f) + ϑ ||f − y||22 (1)

where ϑ is a regularizing parameter. The ranking vector f∗ =
argminf Q̃(f) is [11]:

f
∗ =

ϑ

1 + ϑ

(

I− 1

1 + ϑ
A
)−1

y. (2)

Hereafter, each vertex subset is referred to object group to avoid

confusion with social groups. Indisputably, each object group con-

tributes differently to the ranking procedure. According to [13], a

Group Lasso regularizing term is more appropriate than the ℓ2 norm

in this kind of problems. The hypergraph vertices are split into S
non-overlapping object groups (images, users, social groups, geo-

tags, tags) and different weights γs, s = 1, 2, . . . , S are assigned

to each object group, yielding the following objective function to be

minimized:

Q(f) = Ω(f) + ϑ

S
∑

s=1

√

γs (f − y)TKs(f − y). (3)

In (3), ϑ is also a regularizing parameter and Ks is the |V | × |V |
diagonal matrix with elements equal to 1 for the vertices, which be-

long to the s-th object group. The minimization problem can be

expressed as:

f
∗ = argmin

f

Q(f). (4)

Let x = f − y. The auxiliary variable z = x is introduced and (4)

is rewritten as:

argmin
x

1

2
(x+ y)TL(x+ y) + ϑ

S
∑

s=1

√

γs zTKsz

s.t. z = x. (5)

The solution of (5) can be obtained by minimizing the augmented

Lagrangian function

L(x, z,λ) = 1

2
(x+ y)TL(x+ y) + ϑ

S
∑

s=1

√

γszTKsz

+λ
T (z− x) +

µ

2
‖z− x‖22, (6)

where λ is the vector of the Lagrange multipliers, which is updated

at each iteration and µ is a parameter regularizing the violation of

the constraint x = z. (6) can be solved by the Alternating Directions

Method [14], as shown in Algorithm 1. Solving for xt+1 in line 3
yields

x
t+1 = (L+ µ

t
I)−1(λt + µ

t
z
t − Ly). (7)

The minimization problem described in line 4 of Algorithm 1 can be

expressed as

min
z

µ
t

{

ϑ

µt

S
∑

s=1

√
γs
√

zTKsz+
1

2
‖z− (xt+1 − 1

µt
λ

t)‖22
}

. (8)

By applying the soft-thresholding operator [15], we obtain

zj =
rj

||rs||2
max

(

0, ||rs||2 − ϑµ
t 1√

γs

)

(9)

where rj = xt+1
j − 1

µt λ
t
j , s is the object group where the j-th

element belongs, and rs indicates the segment of r associated to the

s-th object group.

Algorithm 1 Alternating Directions Method

1: Given xt,zt and λ
t.

2: Set tolerance ǫ and initialize µ.

3: xt+1 ← argmin
x

L(x, zt,λt)

4: zt+1 ← argmin
z

L(xt+1, z,λt)

5: if ‖z− x‖22 > ǫ then

6: λ
t+1 ← λ

t + µt(zt+1 − xt+1)
7: µt+1 = min(1.1µt, 106)
8: else

9: return xt+1, zt+1.

10: f = xt+1 + y

11: end if

3. DATASET DESCRIPTION AND HYPERGRAPH

CONSTRUCTION

3.1. Dataset description

For evaluation purposes, an image dataset was collected from

Flickr. It contains both indoor and outdoor medium size pho-

tos of popular Greek landmarks, various city scenes and landscapes.

Using FlickrApi 3, a large set of ”geotagged” images was down-

loaded along with valuable information related to them (id, title,

owner, latitude, longitude, tags, image views). Then, the dataset

was filtered based on image views (times that the specific image

has been seen in Flickr) and owner’s uploading statistics. At this

point, it was assumed that images with many views normally depict

important content and owners (users) with many uploaded images

are active ones, possessing many social relations (friends, social

groups). The owners of these images were the users in the dataset.

Then, corresponding social information (friends, social groups)

was crawled and only the groups that had at least 5 owners from

the dataset as members were kept. The specific cardinalities are

summarized in Table 1.

In order to form a proper set of tags, all characters were con-

verted to lower case, unreadable symbols and redundant information

were removed. Next, a dictionary of unique words was generated

along with their frequencies. Then, terms with frequency 1 or 2
were deemed as trash and were removed from the set of tags and

the vocabulary. Finally, spelling mistakes were corrected and any

morphological variations merged using the Edit Distance [16].

Geo-tags were clustered into 125 different clusters using hierar-

chical clustering after computing pairwise distances with “Haversine

formula”4.

Table 1. Dataset objects, notations, and counts.

Object Notation Count

Images Im 1292
Users U 440
User Groups Gr 1644
Geo-tags Geo 125
Tags Ta 2366

3http://www.flickr.com/services/api/
4http://www.movable-type.co.uk/scripts/latlong.html



3.2. Hypergraph construction

The vertex set is defined as V = Im ∪ U ∪ Gr ∪ Geo ∪ Ta. The

hypergraph, H is formed concatenating the 6 hyperedge sets as re-

flected in Table 2 and it has a size of 5867 × 30924 elements. In

the following, the weights of the hyperedge sets E(1)–E(5) are set

equal to one. The dataset has captured 2276 friendship relations and

19127 tagging ones.

E(1) represents a pairwise friendship relation between users.

The incidence matrix of the hypergraph UE(1) has a size of 440 ×
2276 elements.

E(2) represents a user group and it contains all the vertices of

the corresponding users as well as the ones corresponding to the user

group. The incidence matrix of the hypergraph UE(2)−GrE(2) has

a size of 2084× 1644 elements.

E(3) contains a user and an uploaded image, representing a user-

image possession relation. The incidence matrix of the hypergraph

UE(3) − ImE(3) has a size of 1732 × 1292 elements. Evident as

each image has only one owner.

E(4) captures a geo-location relation. This hyperedge set con-

tains triplets of Im, U and Geo. The incidence matrix of the hy-

pergraph ImE(4) − UE(4) − GeoE(4) has a size of 1857 × 125
elements.

E(5) also contains triplets, Im, U and Ta. Each hyperedge

represents a tagging relation. The ImE(5) − UE(5) − TaE(5) has

a size of 4098× 19127 elements.

E(6) contains pairs of vertices, which represent two images,

with its weight w(e
(6)
ij ) set as the similarity between images i

and j, normalized as follows to eliminate the bias, w(e
(6)
ij )′ =

w(e
(6)
ij

)

max(w(e
(6)
i

))
. In order to form this part of the hypergraph, both

global and local features were used. Firstly, the 100 nearest neigh-

bors to each image were identified using GIST descriptors [17] and

they were reduced to the 5 most similar images to the reference

image, by using scale-invariant feature transform (SIFT) [18]. The

size of ImE(6) is 1292× 6460.

The query vector y is initialized by setting the entry correspond-

ing to the target user u to 1 and all others objects Im, Gr, Geo,

Ta connected to the specific user to A(u, v). Similarly, in geo-

referenced image recommendation, the entry corresponding to the

referenced geo-location (geo-cluster) geo is set to 1, users u and

images im connected to this geo-location are set to A(geo, u) and

A(geo, im) respectively. It is underlined, that A(i, j) is the element

of A which correspond to the objects i and j and it is a relatedness

measure of the 2 connected objects. The query vector y has a length

of 5867 elements.

The ranking vector f∗ is derived by solving either (2) or (4), after

setting the values of the query vector y, the regularization parameter

ϑ, and the group of objects weights γs in the case of (4). It has the

same size and structure as y. The values corresponding to images

are used for personalized or geo-referenced image recommendation

with the top ranked images being recommended to the user or rec-

ommended for the referenced geo-location (geographical cluster).

3.3. Experiments

The averaged Recall-Precision and F1 measure are used as figures of

merit. Precision is defined as the number of correctly recommended

images divided by the number of all recommended images. Recall

is defined as the number of correctly recommended images divided

by the number of all images the user has actually uploaded. The

F1 measure is the weighted harmonic mean of precision and recall,

Table 2. The structure of the hypergraph incidence matrix H and its

sub-matrices.

E(1) E(2) E(3) E(4) E(5) E(6)

0 0 ImE(3) ImE(4) ImE(5) ImE(6)

UE(1) UE(2) UE(3) UE(4) UE(5)
0

0 GrE(2)
0 0 0 0

0 0 0 GeoE(4)
0 0

0 0 0 0 TaE(5)
0

which measures the effectiveness of recommendation when treating

precision and recall as equally important. We refer to the ranking

obtained by (2) and (4) as Image Recommendation on Hypergraph

(IRH) and Query Group Sparse Optimization (QGSO), respectively.

For evaluation purposes, a test set containing the 25% of the

images and a training set containing the remaining 75% are defined.

The test set is not included in the training procedure. The results

of the personalized image recommendation (IRH) are demonstrated

in Fig. 1 and the ones of the geo-referenced recommendation (Geo-

IRH) in Fig. 2. In Fig. 1, the averaged Recall-Precision curves are

plotted by averaging the Recall-Precision curves over 110 users with

at least 3 uploaded images. To calculate the recall and precision, the

10 top ranked images are being recommended to the user. Similarly,

in the Fig. 2, Recall-Precision curves for 60 geo-locations having at

least 3 associations with images are averaged. The 10 top ranked

images are being recommended as relevant to the referenced geo-

location.

In Fig. 1, IRH1 corresponds to a reduced hypergraph defined as

H̃ = E(3) ∪E(4) ∪E(5) ∪E(6) without any information about user

groups and friendships. The IRH exploits the complete hypergraph,

yielding better results. It is clearly seen that the information provided

by social media improves the quality of image recommendation. By

enforcing group sparsity in the ranking problem, the performance is

further improved. The weights for the 5 different object groups (im-

ages, users, user groups, geo-tags and tags) were set to 0.9, 0.9, 0.6,

0.2, 0.8 respectively. This choice was made empirically. Preliminary

results for the Geo-IRH are promising, as it is shown in Fig. 2.

In Table 3, the averaged F1 measure is listed for IRH, IRH1,

Geo-IRH and QGSO, corresponding to 5 different ranking positions.

It is evident that the IRH, Geo-IRH and QGSO have efficient results.

The IRH and the QGSO yield a higher F1 measure than IRH1 and it

is also clearly indicated, that the QGSO outperforms the IRH, espe-

cially at lower ranking positions.

Table 3. F1 measures for all compared algorithms at ranking posi-

tions 1, 2, 5, 8 and 10.

F1@1 F1@2 F1@5 F1@8 F1@10
IRH1 0.450 0.640 0.527 0.414 0.359
IRH 0.470 0.685 0.544 0.420 0.358
QGSO 0.494 0.734 0.589 0.457 0.401
Geo-IRH 0.423 0.644 0.597 0.530 0.487

4. CONCLUSION AND FUTURE WORK

In this paper, a novel and efficient recommendation method is pro-

posed, which fully exploits image content, context and social me-
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Fig. 1. Averaged Recall-Precision curves for IRH1, IRH and QGSO.
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Fig. 2. Averaged Recall-Precision curves for the Geo-IRH method.

dia information. Thanks to hypergraph learning, personalized and

geo-referenced image recommendation have been suggested and fur-

ther improved by enforcing group sparsity constraints. The pro-

posed methods can also accommodate friend recommendation, geo-

tag prediction, or image annotation. They can also support the fusion

of different types of multimedia, such as audio, video, and text.

5. ACKNOWLEDGMENTS

This research has been co-financed by the European Union (Eu-

ropean Social Fund - ESF) and Greek national funds through the

Operation Program “Competitiveness-Cooperation 2011” - Research

Funding Program: SYN-10-1730-ATLAS.

6. REFERENCES

[1] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval:

Ideas, influences, and trends of the new age,” ACM Comput.

Surv., vol. 40, no. 2, pp. 5:1–5:60, 2008.

[2] Y.-T. Zheng, M. Zhao, Y. Song, H. Adam, U. Buddemeier,

A. Bissacco, F. Brucher, T.-S. Chua, and H. Neven, “Tour the

world: Building a web-scale landmark recognition engine,” in

Proc. IEEE Computer Vision Pattern Recognition, 2009, pp.

1085–1092.

[3] O. Chum and J. Matas, “Large-scale discovery of spatially

related images,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 32, no. 2, pp. 371–377, 2010.

[4] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Ob-

ject retrieval with large vocabularies and fast spatial matching,”

in Proc. IEEE Computer Vision Pattern Recognition, 2007, pp.

1–8.

[5] Y. Avrithis, Y. Kalantidis, G. Tolias, and E. Spyrou, “Re-

trieving landmark and non-landmark images from community

photo collections,” in Proc. Int. Conf. Multimedia, 2010, pp.

153–162.

[6] L. S. Kennedy and M. Naaman, “Generating diverse and rep-

resentative image search results for landmarks,” in Proc. 17th

Int. Conf. World Wide Web, 2008, pp. 297–306.

[7] C. Berge and Edward Minieka, Graphs and Hypergraphs,

vol. 7, North-Holland, Amsterdam, 1973.

[8] D. Zhou, J. Huang, and B. Schölkopf, “Learning with hy-

pergraphs: Clustering, classification, and embedding,” in Ad-

vances in Neural Information Processing Systems, 2006, pp.

1601–1608.

[9] Z. Yu, S. Tang, Y. Zhang, and J. Shao, “Image ranking via at-

tribute boosted hypergraph,” in Proc. 13th Pacific-Rim Conf.

Advances in Multimedia Information Processing, 2012, pp.

779–789.

[10] J. Yu, D. Tao, and M. Wang, “Adaptive hypergraph learning

and its application in image classification,” IEEE Trans. Image

Processing, vol. 21, no. 7, pp. 3262–3272, 2012.

[11] J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, Z. Lijun, and X. He,

“Music recommendation by unified hypergraph: Combining

social media information and music content,” in Proc. ACM

Conf. Multimedia, 2010, pp. 391–400.

[12] S. Agarwal, K. Branson, and S. Belongie, “Higher order learn-

ing with graphs,” in Proc. 23rd Int. Conf. Machine Learning,

2006, pp. 17–24.

[13] M. Yuan and Y. Lin, “Model selection and estimation in re-

gression with grouped variables,” J. Royal Statistical Society:

Series B (Statistical Methodology), vol. 68, no. 1, pp. 49–67,

2006.

[14] Z. Lin, R. Lui, and Z. Su, “Linearized alternating direction

method with adaptive penalty for low-rank representation,” in

Proc. Neural Information Processing Systems, 2011, pp. 612–

620.

[15] Z. Qin and K. Scheinberg, “Efficient block-coordinate descent

algorithms for the Group Lasso,” Industrial Engineering, pp.

1–21, 2010.

[16] E. S. Ristad and P. Yianilos, “Learning string-edit distance,”

IEEE Trans. Pattern Analysis and Machine Intelligence, vol.

20, no. 5, pp. 522–532, 1998.

[17] A. Oliva and A. Torralba, “Building the GIST of a scene: The

role of global image features in recognition,” Progress in Brain

Research, vol. 155, pp. 23–36, 2006.

[18] D. G. Lowe, “Distinctive image features from scale-invariant

keypoints,” Int. Journal Computer Vision, vol. 60, no. 2, pp.

91–110, 2004.


