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ABSTRACT
In this paper, we propose a framework for clustering shots
from stereoscopic videos into clusters that correspond to se-
mantic concepts exploiting visual and disparity information.
Various color, disparity and texture descriptors are applied to
shot key frames for obtaining low-level representations. Self
Organizing Maps are subsequently employed upon various
combinations of these representations in order to determine a
lattice of representative semantic concepts. Experimental re-
sults on performances and football stereoscopic videos show
that the use of disparity information leads to better clustering
compared to using visual information only.

Index Terms— Semantic concepts, stereoscopic video,
disparity, shot clustering, Self Organizing Map

1. INTRODUCTION
Clustering of video shots has been researched mainly within
a video summarization and efficient video browsing context.
Indeed, clustering together shots with similar visual content
is one approach/step towards summarizing a video, since the
visual information in similar shots can be significantly con-
densed, whereas dissimilar shots should most probably form
distinct parts of a visual summary. Also, shot clustering has
been researched in the context of segmenting a video into
scenes. Since a scene is a collection of temporally consec-
utive shots, one approach in doing scene detection is through
clustering shots into clusters, each corresponding to a scene.
Some characteristic techniques related to the above areas can
be found in [1, 2, 3, 4, 5, 6].

Although 3DTV, 3D cinema have witnessed an increased
popularity during the last years [7], a very limited number of
shot clustering techniques operating on stereoscopic or mul-
tiview videos have been presented. Specifically, a method for
multi-view video summarization including a shot clustering
approach was proposed in [8]. The method represents the
multi-view video structure by using a spatio-temporal shot
graph, clusters the shots using random walks and generates
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the final summary by multi-objective optimization. [9] pro-
poses a technique for summarization of stereoscopic videos,
which performs object segmentation utilizing both color and
depth information. In next, feature vectors are constructed us-
ing multidimensional fuzzy classification of segment features
including size, location, color and depth, and similar shots are
clustered based on the generalized Lloyd-Max algorithm.

In this paper, we propose a novel framework for shot clus-
tering on stereoscopic video content into clusters that (hope-
fully) correspond to semantic concepts. Clustering of video
shots into clusters that correspond to semantic concepts/tags
is somewhat related to the research areas described above but
also has certain important differences. This is because vi-
sually similar shots not necessarily correspond to the same
semantic concept/tag, whereas shot clustering for scene de-
tection would not group together scenes that correspond to
the same concept. The main aim is to utilize disparity in-
formation, through disparity-based low-level features and to
check whether this additional information can provide better
clustering results compared to using low-level visual infor-
mation only. Such low-level representations can be generated
by employing various color, disparity and texture descriptors
to shot key frames [10]. Various types of video content can
be handled, notably movies, performances and sports video
[11]. Once clustering is performed, an annotator can then
view the results and assign semantic labels/tags such as “field
long-view”, “player medium-view” to those clusters that have
some meaning. The results of such a procedure can be used
for stereoscopic video summarization or for metadata stor-
age and search purposes, e.g., in AVDP format [12, 13]. The
proposed approach is based on deriving combinations of low-
level features and then using a Self Organizing Map for the
clustering. Additionally, a way is presented to address the
fact that the generated features from the various descriptors
have different dimensionality.

2. PROPOSED METHOD
2.1. Feature Extraction
The proposed method operates on stereoscopic videos con-
sisting of two visual channels (left and right). Moreover, it is
assumed that disparity information has been calculated and is
available in the form of a disparity channel. Let V be a video



containingN shots. Each shot is represented by the visual and
disparity information of a single frame, namely the key frame,
selected through a key frame selection algorithm, resulting to
two image sets Kf = {kf

1 , ...,k
f
N} and Kd = {kd

1, ...,k
d
N}

containing the key frames of the left channel and the corre-
sponding disparity maps, respectively.

Various color, disparity and texture descriptors are ap-
plied to the above key frames in order to generate low-level
features. Specifically, we adopt the image representation,
proposed in [14], by evaluating color/disparity histogram
[15], color/disparity auto-correlogram [16], color/disparity
moments, Gabor wavelet [17] and wavelet transform [18]
moments. Hereafter, f jki denotes a generated feature vector,
where j can get one value of H , A, M , G, and W denoting
the corresponding descriptor (histogram, auto-correlogram,
moments, Gabor wavelet moments and wavelet transform
moments), k can be v, d or vd depending on the kind of in-
formation (visual, disparity or visual+disparity, respectively)
and i denotes the size number of elements of feature vector i.
In more detail:

• Color/disparity histogram: For each visual key frame
kf
i , a 3D HSV joint histogram

(
fHv
32

)
is generated by

uniformly quantizing its H, S and V components into 8,
2 and 2 bins, respectively. In the case of disparity key
frame kd

i , disparity is uniformly quantized into 32 bins(
fHd
32

)
. Also, a histogram is generated using both kf

i

and kd
i images: H, S, V components and disparity are

uniformly quantized into 8, 2, 2 and 8 bins respectively
to generate a 4D HSVD joint histogram

(
fHvd
256

)
.

• Color/disparity auto-correlogram: The color or dispar-
ity auto-correlogram is evaluated by quantizing sepa-
rately the kf

i and kd
i images into 4 × 4 × 4 colors

in the RGB space1, and an extra auto-correlogram is
evaluated using both kf

i and kd
i images, quantized into

4 × 4 × 4 × 4 colors in the RGBD space. The gener-
ated feature vectors are denoted by fAv

64 , fAd
64 and fAvd

256 ,
respectively.

• Color/disparity moments: Mean and standard devia-
tion are evaluated for the R,G,B channels separately for
each kf

i and kd
i image resulting to fMv

6 and fMd
6 fea-

ture vectors, respectively.

• Gabor wavelet moments: Gabor wavelet filters are ap-
plied to the kf

i and kd
i images, spanning four scales

[0.05, 0.1, 0.2, 0.4] and six orientations [0, π/6, π/3,
π/2, 2π/3, π]. The mean and standard deviation of the
Gabor wavelet coefficients are then computed, resulting
to fGv

48 and fGd
48 feature vectors.

• Wavelet transform moments: Wavelet transform with a
3-level decomposition is applied to the kf

i and kd
i im-

ages. The mean and standard deviation of the wavelet

1The disparity image is considered as a three-channel grayscale image
(R=G=B).

transform coefficients are then computed, resulting to
fWv
48 and fWd

48 feature vectors.

Since the range of values of the features vectors varies widely,
the features generated for all shots are rescaled in the range
[0, 1].

Representations of shots are then formed by various con-
catenations of the above feature vectors. Regarding visual
features, a concatenations of all five feature vectors are used.
Since a disparity map is a coarse estimation of depth and
does not contain many details, applying texture descriptors,
namely Gabor wavelet and wavelet transform coefficients
moments, to a disparity image may be meaningless, two rep-
resentations of shots based on disparity features have been
tested: the first one consists of disparity histogram, auto-
correlogram and moments, while the second one includes
all five feature vectors. In the same way, for the represen-
tation of shots based on both visual and disparity features,
sets of features that do or do not contain the texture-related
features (Gabor wavelet and wavelet transform coefficients
moments) are constructed. For each case (with/without tex-
ture features) two feature sets are constructed (four fea-
tures sets in total). The first set contains features generated
by applying the histogram and auto-correlogram descrip-
tors on the HSVD or RGBD space and the remaining ones
separately on the visual and disparity images (namely fea-
tures fHvd

256 , fAvd
256 , f

Mv
6 , fMd

6 , fGv
48 , f

Wv
20 , fGd

48 , f
Wd
20 ), while

the second one includes features generated by applying all
the descriptors separately on the visual and disparity images
(namely features fHv

32 , f
Av
64 , f

Mv
6 , fGv

48 , f
Wv
20 , fHd

32 , f
Ad
64 , f

Md
6 ,

fGd
48 , f

Wd
20 ). Table 1 summarises the used sets of features.

Info Sets of Features Abbreviation

Visual fHv
32 , f

Av
64 , f

Mv
6 , fGv

48 , f
Wv
20 Vis

Disparity
fHd
32 , f

Ad
64 , f

Md
6 Disp1

fHd
32 , f

Ad
64 , f

Md
6 , fGd

48 , f
Wd
20 Disp2

Visual
+
Disparity

fHvd
256 , fAvd

256 , f
Mv
6 , fMd

6 VisDisp1
fHvd
256 , fAvd

256 , f
Mv
6 , fMd

6 ,
VisDisp2

fGv
48 , f

Wv
20 , fGd

48 , f
Wd
20

fHv
32 , f

Av
64 , f

Mv
6 , fGv

48 , f
Wv
20 ,

VisDisp3
fHd
32 , f

Ad
64 , f

Md
6

fHv
32 , f

Av
64 , f

Mv
6 , fGv

48 , f
Wv
20 ,

VisDisp4
fHd
32 , f

Ad
64 , f

Md
6 , fGd

48 , f
Wd
20

Table 1. Image Feature Sets.

2.2. Shot Clustering
After computing the features and preparing the feature sets
through their concatenation, a data matrix is formed contain-
ing the shots representation. Let us denote by xi, i = 1, .., N ,
a vector containing the features of i-th shot, namely one of the
sets summarized in Table 1. To produce clusters for group-
ing the shots, a 2D Self Organizing Map (SOM) [19] is used.
SOM is a Neural Network consisting of a computional layer



with a number of neurons (M = Nr ×Nc) arranged in rows
(Nr) and columns (Nc) where each neuron has a weight wj ,
j = 1, ..,M . The iterative training procedure for constructing
the SOM consists of the following steps:

1. Competition: For each of the input vectors xi, its Eu-
clidean distance from ever SOM neuron (actually the
neuron weight wj) is calculated. The winning neuron
k (k being the neurons index) is the one with the small-
est distance.

2. Cooperation: The winning neuron k determines the
spatial location of a topological neighborhood hk of
excited neurons. A typical choice of hk is the Gaus-

sian function hk(n) = exp

(
− r2kl
2σ2(n)

)
, where

rkl is the Euclidean distance between the winning
neuron k and the l neighboring neuron, n is the
iteration index and σ(n) is the neighborhood size
σ(n) = σ(0) exp

(
− n
E

)
, where E is the total number

of training iterations and σ(0) is the initial neighbor-
hood size.

3. Adaptation: Each neuron is adapted with respect to its
distance from the winning neuron and the input vector
wl(n+1) = wl(n)+ η(n)hkl(n)(xi−wl(n)), where
η(n) is the learning rate η(n) = η(0) exp

(
− n
E

)
and

η(0) is the initial learning rate.

2.3. Alternative Shot Representation
Shot representation presented in Subsection 2.1 consists of
combinations of various feature vectors. An issue arising
from such a representation is the fact that the correspond-
ing feature vectors have different dimensionality, which may
affect the contribution of each feature vector on the shot
representation. For example, the color histogram and auto-
correlogram are represented from 32 and 64 values, respec-
tively, which may create bias in favor of auto-correlogram
over histogram. To overcome this issue, an alternative SOM-
based shot representation is created, and compared against
the simple feature concatenation based representation in Sub-
section 2.1. More specifically, we construct a different SOM
for each feature vector participating in a feature set, trained
on the corresponding training data. We use the same SOM
topologies (for example 4×4) for all the feature vectors. After
the SOMs construction, each input vector xi corresponding to
a feature vector is mapped to the respective SOM by calculat-
ing its Euclidean distance from all SOM weights/neurons wj .
The obtained distances dij = ‖xi − wj‖2 for all the feature
types are concatenated to form the new shot representation.
In the following, we refer to such representations by using the
same notations as those for the features in Table 1 followed
by the “SOM” suffix, e.g., Disp1SOM.

3. EXPERIMENTAL EVALUATION
In this section we present the experiments conducted in order
to assess the performance of the proposed framework for shot

clustering into semantic concepts in performance and sports
videos, as their analysis is of big importance [11]. We have
used two video datasets consisting of performances and foot-
ball stereoscopic videos. The performances dataset consists
of six videos depicting three concerts and three dance shows.
The football dataset consists of three football matches. The
disparity maps of performance and football videos were ex-
tracted using the methods described in [20, 21] and [22], re-
spectively. Shot boundary detection and key frame selection
algorithms described in [23] have been applied to the color
channels of the videos in order to extract shots and a repre-
sentative frame (key frame) for each shot. Table 2 lists the
videos used in our experiments and the number of extracted
shots for each video.

Caregory Video Name
#

ground
SOM

shots
truth

size
clusters

Perfor-
mance

1-Concert1 51 6 3× 3
2-Concert2 10 3 2× 2
3-Concert3 73 6 3× 3
4-DanceShow1 37 4 2× 2
5-DanceShow2 43 4 2× 2
6-DanceShow3 27 4 2× 2

Football
7-FootballMatch1 224 4 2× 2
8-FootballMatch2 305 4 2× 2
9-FootballMatch3 223 4 2× 2

Table 2. The list of videos used in our experiments.
To evaluate the various shot clustering results, we cre-

ated ground-truth labels for the shots of the above videos
by manually grouping the shots into a number of semantic
concepts. The following labels have been used to describe
these concepts: a) “stage extreme-long-view”, “stage long-
view”, “audience”, “rear view”, “performer medium-view”,
“performer long-view” for the performances, and b) “field
extreme-long-view”, “field long-view”, “player long-view”
and “player medium-view” for the football videos. Table 2
lists the number of ground-truth clusters for each video. In
Figure 1, an example image for each concept label is pro-
vided.

After extracting the features (visual, disparity, visual+dis-
parity) as described in Subsections 2.1 and 2.3 for each video,
SOMs were constructed, for each feature set of Table 1. In all
the experiments, the initial learning rate η(0), neighborhood
size σ(0) and the total number of training iterations E were
set to 0.01, 8 and 350, respectively, while the number of SOM
neurons for each video is selected according to the number of
ground-truth clusters, as depicted in Table 2. For example, in
the case of video 9, a 2× 2 SOM topology was used. Finally,
for the SOM constructed to generate sets of features with the
same dimensionality (Subsection 2.3), a bigger initial learn-
ing rate η(0) was selected (0.5) in order to learn the general
structure of data and avoid overtraining.

Table 3 shows the best clustering performance for the vi-
sual, disparity and visual+disparity feature sets presented in



(a) stage extreme-long-view (b) stage long-view

(c) audience (d) rear view

(e) performer long-view (f) performer medium-view

(g) field extreme-long-view (h) field long-view

(i) player long-view (j) player medium-view

Fig. 1. Examples of various semantic concepts/labels (source:
Youtube).
Table 1 expressed as the mean value of the F1 measure for
10 different random initializations of the SOM. F1 measure

is defined as F1 = 2
PrecRec

Prec+Rec
, where Prec and Rec de-

note the precision and recall measures, respectively. The cor-
responding best combinations of features (feature sets) are
shown in brackets. As can be seen, the use of disparity infor-
mation either alone or in combination with visual information
leads to better performance than the use of visual information
only. Specifically, the increase in the F1 measure between the
best combination of visual features and the best combination
of disparity or visual+disparity features ranges from 0.020 to
0.198. Regarding the performance of disparity-related feature
sets (third column in Table 3), it can be seen that sets con-
taining texture-related descriptors (Disp2 and Disp2SOM) do
not perform very well. In the case of visual+disparity feature
sets, the sets VisDisp4, VisDisp3 and VisDisp4SOM usually
achieve the better clustering. This means that applying the
various descriptors separately to color and disparity images
leads to better clustering compared to applying them to both
color and disparity images (VisDisp1 and VisDisp2 cases).
Additionally, the hypothesis that the different dimensionality
of various feature vectors may create bias in favor of some

descriptors is proven true by the fact that the SOM represen-
tations of feature sets (denoted by the “SOM” suffix) outper-
form the standard ones in most cases.

Video Visual Disparity Visual+Disparity

1
0.376 0.380 0.574

(VisSOM) (Disp1SOM) (VisDisp4)

2
0.485 0.649 0.485

(VisSOM) (Disp1) (VisDisp4SOM)

3
0.724 0.633 0.746

(VisSOM) (Disp2) (VisDisp4SOM)

4
0.362 0.401 0.445

(VisSOM) (Disp1SOM) (VisDisp4SOM)

5
0.352 0.501 0.400

(VisSOM) (Disp2SOM) (VisDisp1SOM)

6
0.548 0.444 0.578

(VisSOM) (Disp1SOM) (VisDisp2)

7
0.515 0.461 0.557

(VisSOM) (Disp1SOM) (VisDisp3)

8
0.687 0.578 0.756

(VisSOM) (Disp1SOM) (VisDisp3)

9
0.550 0.474 0.570
(Vis) (Disp1SOM) (VisDisp4)

Table 3. Comparative results using the F1 measure.

Figure 2 illustrates a SOM lattice obtained for video 1
by using visual+disparity information where the closest train-
ing image to the corresponding neuron is depicted. As can
be seen, disparity plays an essential role, since the top-left
neurons correspond to shots where the camera is close to the
subjects and thus are related to concepts such as “performer
medium-view”, while towards the bottom-right neurons the
depth increases leading to concepts such as “stage extreme-
long-view”.

Fig. 2. A 3 × 3 SOM obtained by using visual and disparity
information (source: Youtube).

4. CONCLUSIONS
In this paper, we presented a method for stereoscopic video
shot clustering into semantic concepts exploiting visual and
disparity information. Shots are represented by the respective
key frames and various color, disparity and texture descrip-
tors are applied to them in order to obtain low-level repre-
sentations. Self Organizing Maps are constructed to obtain
a topographic map of representative semantic concepts. The
combination of visual and disparity features on performance
and football videos achieved better clustering than the use of
visual features only.
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