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ABSTRACT

A burst of interest in image annotation and recommendation has

been witnessed. Despite the huge effort made by the scientific com-

munity in the aforementioned research areas, accuracy or efficiency

still remain open problems. Here, efficient methods for image anno-

tation, visual image content classification as well as touristic place

of interest (POI) recommendation are developed within the same

framework. In particular, semantic image annotation and touristic

POI recommendation harness the geo-information associated to im-

ages. Both semantic image annotation and visual image content clas-

sification resort to Probabilistic Latent Semantic Analysis (PLSA).

Several tourist destinations, strongly related to the query image, are

recommended, using hypergraph ranking. Experimental results were

conducted on a large image dataset of Greek sites, demonstrating the

potential of the proposed methods. Semantic image annotation by

means of PLSA has achieved an average precision of 90% at 10%
recall. The average accuracy of content-based image classification

is 80%. An average precision of 90% is measured at 1% recall for

tourism recommendation.

Index Terms— Probabilistic Latent Semantic Analysis (PLSA),

Image Classification, Image Annotation, Recommender systems,

Hypergraph

1. INTRODUCTION

Nowadays, the deployment of many photo-sharing web applications

with rising popularity has increased tremendously the amount of im-

ages uploaded to the web. Consequently issues related to search and

organization have emerged, amplifying the need for efficient annota-

tion and recommendation algorithms. Several websites like Flickr1

or Picasa Web Album2 enable users to annotate images, describing

their content. Image annotation aims at bridging the semantic gap

between the semantic and visual content of an image. Furthermore,

it affects significantly the retrieval accuracy of search engines, which

are based heavily on the text information provided with images, such

as tags, titles, etc.

During the last years, besides annotation, increasing interest in

efficient recommendation has been witnessed. Indeed, brochures or

simple web search have been substituted by tourist recommendation

systems. Despite the effort that has been made so far, there are open

problems in accuracy and efficiency to be addressed.

In the past, many efforts were made toward image annotation.

In [1], an image and video annotation model was proposed based

1http://www.flickr.com
2http://picasaweb.google.com

on the joint probability distribution of tags and image feature vec-

tors. The tag probabilities were computed using a multiple Bernoulli

model and the probabilities of image features were obtained using

non-parametric kernel density estimates. A joint probabilistic model

was proposed for simultaneous image classification and annotation

in [2]. It was based on a multi-class extension of the supervised

Latent Dirichlet Analysis (sLDA) [3]. Graph-based methods were

proposed in [4, 5] for tag recommendation, capturing the informa-

tion from multi-type interrelated objects. A related work in tourism

recommendation is that of L. Cao et al. [6], where recommendation

was based on clustering of geotagged images by location and visual

matching.

The main contribution of this paper is in the development of effi-

cient semantic image annotation, content-based image classification,

and tourism recommendation methods in a unifying canvas. Indeed,

semantic image annotation and tourism recommendation harness the

geo-tag information of images. Probabilistic Latent Semantic Analy-

sis (PLSA) is the heart of the methods for semantic image annotation

and content-based image classification, and pertains the hypergraph

ranking employed for tourism recommendation. In addition, the pro-

posed content-based image classification is exploited to propagate

labels associated with visual content classes to images, enhancing

further the semantic image annotation.

To begin with, geo-tagged images are first clustered by location

(latitude, longitude), forming several geographical clusters, called

geo − clusters hereafter. The geo-clusters are then sorted with re-

spect to their density (i.e., the number of images they contain) to

define the places of interest (POIs) to tourists. The underlying ra-

tionale is that popular tourist destinations attract more visitors, who

upload more geo-tagged images on the web. For each geo-cluster,

a document is formed by concatenating the text information (e.g.,

title, tags) associated to the images that belong to this geo-cluster.

Next, a term-document matrix is created and PLSA [7–9] is applied

to it. Replacing PLSA with LDA [10] does not improve the anno-

tation performance. Thus, PLSA is preferred due to its simplicity.

During the annotation, the most strongly related terms to the prevail-

ing topic of each geo-cluster are assigned to it and propagated to all

its constituent images.

Semantic image annotation is complemented by content-based

image classification based on the PLSA applied to the visual word-

image matrix. Both SIFT [11] and GIST [12] descriptors are ex-

ploited to classify each image to a predefined number of classes as-

sociated to a large image dataset. The class label is treated as a

complementary image description.

Tourism recommendation is based on a hypergraph [13] whose

vertices are the annotation terms, the geo-cluster documents, and the

latent topics derived by the PLSA. The hyperedges of the hypergraph
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Fig. 1. Annotation and recommendation system.

capture the high-order relations between the vertices in contrast to

the edges of common graphs. Tourism recommendation is treated as

a hypergraph ranking problem, recommending the top ranked geo-

clusters as touristic destinations.

The block diagram of the proposed methods is depicted in Fig. 1.

The user gives a test image as input to the system. The image is

assigned to a geo-cluster according to its GPS coordinates and is

annotated semantically and geographically, as it is described in Sec-

tion 3.1. Simultaneously, the image is classified visually into one

of a predefined number of classes, as it is detailed in Section 3.2.

The class label and its associated representative tags are exploited

for visual content annotation. Proceeding to tourism recommenda-

tion, the query vector is set, as in Section 4.1. Hypergraph ranking

is applied to geo-cluster documents, topics, and terms and the top

ranked geo-cluster documents are recommended as touristic POIs.

Promising experimental results are disclosed. In particular, an

average precision of 90% at 10% recall is reported for semantic im-

age annotation. The average accuracy of content-based image classi-

fication of 205 test images over 13 classes is 80%, when both SIFT

and GIST features are exploited. For tourism recommendation, an

average precision of 90% is measured at 1% recall, indicating the

effectiveness of the proposed recommendation method.

The remainder of the paper is organized as follows. In Section

2 the dataset description is presented. In Section 3, semantic im-

age annotation and visual image classification and annotation are

detailed. The hypergraph ranking model and the hypergraph con-

struction are described in Section 4. In Section 5, experimental re-

sults are reported, demonstrating the effectiveness of the proposed

method. Conclusions are drawn and topics for future research are

indicated in Section 6.

2. DATASET

A dataset of 50000 images related to Greek sites was collected from

Flickr. Sample images are depicted in Fig. 2. The geo-tags (GPS

coordinates) of these images were clustered into 4660 clusters by

means of hierarchical clustering applied to distances computed using

the “Haversine formula”3. From these geo-clusters, only the 2000
most dense were considered as touristic (POIs), containing 45316
images. For each geo-cluster, a document was created by concate-

nating the text information (e.g., title, tags) of all its images.

Next, text information related to 150000 images was crawled in

order to properly capture the context of the tourism application. All

characters were converted to lower case. Unreadable symbols and

redundant information were removed. Terms with frequency less

than 100 were eliminated, yielding a vocabulary of 1901 terms.

3http://www.movable-type.co.uk/scripts/latlong.

html

Fig. 2. A sample of 16 images from the dataset.

3. IMAGE ANNOTATION

3.1. Image Annotation Using Semantic Topics

PLSA performs a probabilistic mixture decomposition, which asso-

ciates an unobserved class variable to co-occurrences of terms and

documents. By applying PLSA to a term-document matrix, the rela-

tions between the terms and the documents are captured by the prob-

ability distribution between the documents and the generated topics

as well as between the topics and the terms. PLSA models each term

in a document as a sample from a mixture model. The mixture com-

ponents are multinomial random variables that can be interpreted as

topic representations. The data generation process can be described

as follows, [7, 9]: 1) select a document d with probability P (d), 2)

pick a latent topic za with probability P (za|d) and, 3) generate term

ta with probability P (ta|za).
Let ta ∈ Ta = {ta1

, ta2
, · · · , tak

} be a vocabulary term and

d ∈ D = {d1, d2, · · · , dm} denote a document. The joint probabil-

ity model is defined by the mixture:

P (ta, d) = P (d)P (ta|d)

P (ta|d) =
∑

za∈Za

P (ta|za)P (za|d)











(1)

where za ∈ Za = {za1
, za2

, · · · , zan
} is an unobserved class vari-

able representing the topics. As it is indicated in (1), the document

specific term distribution P (ta|d) is a convex combination of the n

topic dependent distributions P (ta|za). The annotation procedure is

performed as follows:

1 PLSA is applied to a term-document matrix A ∈ R
k×m.

Here, the documents are formed by concatenating any terms

in the tags or the title of the images that belong to a geo-

cluster. Any document d ∈ D is represented by a vector

of size k, having as elements the frequency of occurrence of

each term in d.

2 For each document to be annotated, the most related topic

is chosen, that with the highest probability, i.e., z∗a =
argmaxza∈Za

P (za|d).

3 The k′ << k most related terms to z∗a are identified by sort-

ing P (ta|z
∗
a) in decreasing order of magnitude.

Here, the term document matrix A is of size 1901 × 2000.

Among the most descriptive terms of a document, those providing

geographical information are identified using geo-gazetteers4. Thus,

4http://www.geonames.org



a complete annotation model is built, which provides geographic in-

formation in addition to the semantic information.

3.2. Visual Classification and Annotation

The semantic annotation, detailed in Section 3.1, is complemented

by visual annotation based on scene classification. Scale-invariant

feature transform (SIFT) [11] and GIST [12] descriptors are ex-

tracted from any image. Different visual classes c ∈ C =
{c1, c2, · · · , cp} have been defined, capturing the different themes

pertaining the image dataset. The objective is to propagate the

class label along with the associated tags to each image as visual

annotation.

To construct a proper visual word vocabulary, a small image sub-

set G = {g1, g2, · · · , gν}, made of images without occlusion or

unwanted artifacts, is manually extracted and annotated using the p

class labels. K means is applied to the SIFT descriptors of any image

in the controlled dataset G, in order to quantize them to a predefined

number (e.g., 200) of cluster mean vectors as codevectors. Any im-

age g ∈ G is represented by the concatenation of the codevectors g̃,

instead of the concatenation of SIFT descriptors. K means is applied

to the set of the aforementioned reduced representation g̃ in order to

create the visual word vocabulary. The indices of the resulting code-

vectors are treated as visual words tv ∈ Tv = {tv1 , tv2 , · · · , tvκ},

where κ is the size of visual word vocabulary. Let B ∈ R
κ×ν be the

visual word-image matrix, having as columns the image representa-

tions built by measuring the frequency of visual words the reduced

representations are quantized into. Similar to [14], PLSA is applied

to B in order to calculate the conditional distributions P (tv|zv) and

P (zv|g̃), where zv ∈ Zv = {zv1 , zv2 , · · · , zvl} are the visual latent

topics.

Having learned the aforementioned conditional distributions

from G, any test image gtest is represented by the conditional

distribution P (zv|gtest), obtained by running the M step of the

Expectation Maximization (EM) algorithm for P (zv|gtest) until

convergence, keeping P (tv|zv) fixed to these learned during the

training.

Next, the κG nearest neighbors of the GIST descriptor extracted

from any test image gtest are identified, using the K-nearest neighbor

(KNN) classifier, which employs the Euclidean distances between

gtest and any image in the controlled subset g ∈ G. Let GNN (gtest)
be the set of nearest neighbors. GNN (gtest) is further narrowed

to κGR << κG training images by sorting the χ2 distances be-

tween P (zv|gtest) and P (zv|g), retaining the images associated to

the κGR smallest distances. Let G̃NN (gtest) be the resulting narrow

set. Finally, the test image is assigned to the visual class c being in

majority within the narrow set G̃NN (gtest).

4. TOURISM RECOMMENDATION

A hypergraph is created to capture the multi-link relations between

the vocabulary terms ta, the geo-clusters d, and the topics za, com-

puted in Section 3.1. Hereafter, set cardinality is denoted by | · |, the

ℓ2 norm of a vector appears as ‖.‖2 and I is the identity matrix of

compatible dimensions. Ψ(V,E,w) denotes a hypergraph H, with

set of vertices V and set of hyperedges E to which a weight function

w : E → R is assigned. V consists of objects of different type (geo-

clusters, topics, terms). An incidence matrix H of size |V | × |E|
is formed, having elements H(v, e) = 1, if v ∈ e and 0 otherwise.

The vertex and hyperedge degrees are then defined as:

δ(v) =
∑

e∈E w(e)H(v, e)

δ(e) =
∑

v∈V H(v, e)







. (2)

The following diagonal matrices are defined: the vertex degree ma-

trix Du of size |V | × |V |, the hyperedge degree matrix De of size

|E| × |E|, and the |E| × |E| matrix W, containing the hyperedge

weights defined in Section 4.1.

Let Θ = D
−1/2
u HWD−1

e HTD
−1/2
u . Then, L = I−Θ is the

positive semi-definite Laplacian matrix of the hypergraph. The ele-

ments of Θ, Θ(j, i), indicate the relatedness between the j and i. For

clustering, a real-valued ranking vector f ∈ R
|V | is sought that min-

imizes Ω(f) = 1

2
fTLf , requiring all vertices with the same value

in the ranking vector f to be strongly connected [15]. The afore-

mentioned optimization problem was extended by including the ℓ2
regularization norm between the ranking vector f and the query vec-

tor y ∈ R
|V | [16]. The function to be minimized is then expressed

as

Q̃(f) = Ω(f) + ϑ ||f − y||22 (3)

where ϑ is a regularizing parameter. The best ranking vector, f∗ =
argminf Q̃(f), is [16]:

f
∗ =

ϑ

1 + ϑ

(

I−
1

1 + ϑ
Θ
)−1

y. (4)

4.1. Hypergraph Construction

A hypergraph H having size of 4251×6000 elements was formed by

concatenating 2000 documents associated to the geo-clusters, 350
topics, za, and 1901 vocabulary terms, ta. The vertex set is defined

as V = D ∪ Za ∪ Ta. The structure of the hypergraph is summa-

rized in Table 1. For each document dj associated to a geo-cluster, a

hyperedge e1 is inserted, containing 1 in the jth entry of De1, 1 for

the most related topic to dj , z∗a in Zae1, and 30 ones for the 30 most

descriptive terms ta for z∗a , in Tae1. The weight for this hyperedge

is w(e1) = P (z∗a|dj).
To capture the geographical proximity, hyperedges e2 ∈ E2 are

created. For each dj corresponding to a specific geo-cluster, one hy-

peredge e2 is inserted. It contains 1 to the jth entry, associated to

dj and 1 to the entries corresponding to geo-clusters being at a geo-

graphical distance less than 150 km. The weight for this hyperedge

is set to 1.

In order to capture the visual similarity of the geo-clusters, the

mean value of the GIST descriptors of all the images belonging in

a geo-cluster is computed, as a codevector. For each dj , one e3 is

inserted, having 1 to the jth entry associated to dj and 1 to the 10
nearest neighbor geo-clusters, identified by applying KNN on the

aforementioned codevectors. The hyperedge weight is set to 1.

Table 1. The hypergraph incidence matrix H.

e1 e2 e3
D De1 De2 De3
Za Zae1 0 0
Ta Tae1 0 0

Let d′j be the geo-cluster where the test image gtest belongs to

with respect to its geo-tag. The query vector y ∈ R
|V | is defined as:

y(v) =

{

1, if v = d′j

Θ(d′j , v), otherwise
(5)
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Fig. 3. Recall-precision curves for semantic image annotation by

means of PLSA, LDA, and TF-IDF.

treating Θ(d′j , v) as a measure of relatedness between the vertices of

the hypergraph.

The ranking vector f∗ ∈ R
|V | is derived by solving (4). The val-

ues corresponding to the first 2000 entries associated to geo-cluster

documents are used as rankings for touristic destination recommen-

dation. The top ranked geo-cluster documents are recommended as

touristic POIs to the user, who has imported the test image gtest.

5. EXPERIMENTAL RESULTS

For evaluation purposes, a test set containing 205 images was ran-

domly chosen and excluded from the training set along with any text

associated to these images. PLSA performance in semantic image

annotation has been compared to that of the LDA [10] and the term

frequency-inverse document frequency (TF-IDF) [17]. The average

recall-precision curve is used as a figure of merit. Precision is de-

fined as the number of correctly recommended objects divided by

the number of all recommended objects. Recall is defined as the

number of correctly recommended objects, divided by the number

of all objects. As it is shown in Fig. 3, PLSA outperforms both LDA

and TF-IDF. An average precision of 90% at 10% recall is reported,

using PLSA. It is worth noting, that PLSA is much simpler than the

LDA.

For visual image classification, the same test set was used. Each

test image was assigned into one of 13 representative classes manu-

ally in order to form the ground truth. Visual classification accuracy

is shown in Fig. 4, when only the GIST descriptors were used and

when both SIFT and GIST descriptors were employed, as in Section

3.2. Better results were obtained by using both descriptors. Across

the 205 test set images, the average accuracy of content-based image

classification over 13 classes is 80%.

Two experiments were conducted to assess touristic POI rec-

ommendation. Firstly, only hyperedges e1 ∈ E1 were taken into

account in hypergraph creation. Secondly, all the hyperedges were

considered. The associated recall-precision curves are plotted in

Fig. 5. As is clearly indicated, the results are increased when all

the three types of hyperedges are considered (including, the visual

similarity between the geo-clusters). An average precision of 90%
and 82% is reported at 1% and 10% recall, respectively. In or-

der to form the ground truth, relations were established manually

among the geo-clusters, taking into account the distance, common

geographical entities (e.g., mainland, island) and leisure activities.

For this, various tourist related web sources were exploited, such as
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Fig. 4. Accuracy results of the visual image classification.
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Trip Advisor5 and Travel Muse 6.

6. CONCLUSION AND FUTURE WORK

Efficient PLSA driven image annotation, visual image classification,

and touristic POI recommendation methods have been proposed and

tested on large image collections. The images have been annotated

geographically, semantically, and visually by exploiting visual at-

tributes and text information. Furthermore, tourism recommendation

has been developed based on hypergraph ranking with promising

results. Enhancing these methods by exploiting personalized user

information or integrating on-line updating for hyperedge weights

could be topics of future research.
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