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ABSTRACT

In this paper we present an algorithm for efficient activ-
ity recognition operating upon human skeleton motion se-
quences, derived through motion capture systems or by ana-
lyzing the output of RGB-D sensors. Our approach is driven
from the assumption that, if two such sequences describe
similar activities, then, consecutive frames (poses) of one
sequence are expected to be similar to consecutive frames of
the other. The proposed method adopts a quaternion based
distance metric to calculate the similarity between poses and
an intuitive method for estimating a similarity score between
two skeleton motion sequences, based on the structure of a
pose correspondence matrix. Our method achieved 99.5%
correct activity recognition, when applied on motion cap-
ture data, in a classification task consisting of 18 classes of
activities.

Index Terms— activity recognition, classification

1. INTRODUCTION

Activity recognition, i.e. the identification of the activity per-
formed by a human subject, can be a crucial part in many
applications, such as video surveillance, semantic annotation
and labeling of multimedia data for summarization, indexing
and retrieval in databases, or human-machine interaction. As
a result, activity recognition constitutes an important research
field of computer vision and various approaches have been
proposed [1]. Activities can be simple, everyday actions such
as walking, jumping or waving, or more complex ones, such
as playing basketball or dancing. Although the majority of
the activity recognition algorithms operate upon video data
and rely on features calculated from these data to describe
human motion, several methods adopt a 3D representation of
the human skeleton. Such representations, namely sequences
of 3D skeletal poses over time, can be derived from motion

This research has been co-financed by the European Union (European
Social Fund - ESF) and Greek national funds through the Operation Pro-
gram ”Education and Lifelong Learning” of the National Strategic Ref-
erence Framework (NSRF) - Research Funding Program: THALIS-UOA-
ERASITECHNIS MIS 375435.

capture devices (infrared, ultrasonic, magnetic etc.). Further-
more, skeleton motion sequences can be obtained from the
analysis of video data, or through the processing of RGB-
D (RGB + depth) data generated from the Microsoft Kinect
or similar sensors. Some frames from a skeleton motion se-
quence describing the activities ”clap above head” and ”elbow
to knee” are illustrated in Fig. 1.

An activity recognition method utilizing skeleton motion
data is described in [2], as part of an interactive dance game
framework. The system receives an input stream of motion
data from the player and performs movement recognition,
based on a standard set of template moves. A block matching
approach is adopted, where segments of the incoming motion
stream are continuously compared to motion templates. In
[3], human motion recognition is performed using Support
Vector Machines (SVMs). In addition, the importance of
certain skeleton points to the recognition task is explored.
A different approach can be found in [4], where a distance
function for motion capture sequences suitable for activity
classification, clustering and anomaly detection is introduced.
This method, which is based on the kinetic energy of each
joint, allows for fast computations, as its complexity depends
only on the number of the joints used as features, rather than
the length of each sequence.

An algorithm for sequence alignment and activity recog-
nition, called IsoCCA, is described in [5]. IsoCCA extends
the Canonical Correlation Analysis (CCA) algorithm, by
means of introducing a number of alternative monotonicity
constraints. The activity classification task performed in this
paper is based on a 1-Nearest Neighbor (1-NN) classifier,
that uses the alignment cost between sequences as distance
metric, and yields improved classification rates in compari-
son to other alignment algorithms, such as Canonical Time
Warping (CTW), Dynamic Time Warping (DTW), Hungarian
and CCA.

In [6], a method for activity segmentation and classifica-
tion of motion data is proposed, based on the derivation of
a set of simple movements from the data, called primitives.
Another method for segmentation and recognition of motion
capture sequences is described in [7], where Singular Value
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Fig. 1. Sample frames from skeleton motion sequences of the classes ”clap above head” (b) and ”elbow to knee” (c), from the
HDM05 database.

Decomposition (SVD) and a multi-class SVMs are combined.
In [8], a new representation of skeleton motion data, suit-

able for activity recognition, called Sequence of the Most In-
formative Joints (SMIJ), is proposed. This representation re-
lies on the selection of the skeletal joints carrying the most
information relevant to the motion, according to the values of
measures such as the mean or the variance of the joint rota-
tions. Classification is then performed using an 1-NN classi-
fier as well as SVMs. The activity recognition method pro-
posed in [9] can be applied to motion capture data as well as
to data acquired by RGB cameras with depth sensors, such as
the Microsoft Kinect sensor. As far as features are concerned,
several alternatives are explored, based on the coordinates of
the skeleton joints and on spatial and temporal differences be-
tween them. The classification task is performed using the
Extreme Learning Machine (ELM) algorithm. Specifically,
each frame of a test sequence is classified separately by the
ELM and subsequently, the whole sequence is assigned the
label of the class that yielded the most votes.

In [10], activity recognition is based on modeling the
spatio-temporal relationships between joints, which are
represented by Sparse Granger Causality Graph Models
(SGCGM). Each motion capture sequence is transformed
to a causality graph and classified by a sparse regression
classifier. In [11], a representation for motion capture data,
useful for activity recognition is proposed. Specifically, each
frame of a motion sequence is represented by a matrix con-
taining the distances between the skeleton joints. Principal
Component Analysis (PCA) is applied, in order for the di-
mensionality of the data and the noise associated with it to
be reduced. Finally, classification is performed using action
graphs in conjunction with a probabilistic model.

The method proposed in this paper requires no prepro-
cessing on the skeleton motion data, such as alignment, fea-
ture extraction or temporal segmentation of an activity se-
quence into elementary movements such as steps. The pro-
posed algorithm is based on the hypothesis, that similar skele-
ton motion sequences exhibit strong similarity between suc-
cessive frames in one or more segments within them, which is
expressed through specific patterns in a pose correspondence
matrix. In order to classify skeleton motion sequences to dis-

tinct classes, we developed a scheme for similarity estima-
tion between such sequences. In the following sections, we
discuss the details of our method as well as its experimental
evaluation, when applied on motion capture data.

2. PROPOSED METHOD

The proposed activity recognition method is based on the sim-
ilarity between two skeleton motion sequences and comprises
of two distinct steps: first, a correspondence matrix, that de-
scribes which frame in the second sequence is the most sim-
ilar to each frame in the first sequence, is calculated. Subse-
quently, a similarity score between the two sequences is cal-
culated, based on the correspondence matrix. In the following
subsections, the aforementioned steps are described in detail.

2.1. Correspondence Matrix Construction

Let us consider two skeleton motion sequences denoted with
X = {X1,X2, ...,XM} and Y = {Y1,Y2, ...,YN}, con-
sisting of M and N frames respectively. Each frame in a
sequence describes the pose of the subject, i.e. the config-
uration of the human body parts, at a certain time instance
and consists of the rotation angles of each joint. In order to
construct the correspondence matrix, the distances from each
pose (frame) Yi of the sequence Y to every pose Xi of se-
quence X are calculated.

The distance between two poses can be calculated using
a quaternion-based pose distance, as described in [12]. Let a
pose configuration Xi be expressed in the following form:

Xi = (tr,Rr, (Rb)b∈B), (1)

where tr denotes the position of the root of the skeletal hier-
archy, Rr the absolute root rotation and (Rb)b∈B the relative
joint rotation of the bone b, that consists element of the set of
bones B, with respect to its parent in the skeletal hierarchy.
Additionally, let qb denote the unit quaternion describing the
relative joint rotation Rb of the bone b.

Taking the aforementioned notation into consideration,
the distance between two pose configurations (frames) Xi
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Fig. 2. Examples of correspondence matrices for two movements of the same class ”walk”(a) and different classes ”walk” and
”punch left side” (b).

and Yj can be expressed as follows:

dQuat(Xi,Yj) =
∑
b∈B

wb ·
2

π
· arccos |〈qb|q′b〉|, (2)

where 〈·|·〉 denotes the inner product in R4 and (wb)b∈B
are weights corresponding to the rotation of each joint, with∑

b∈B wb = 1. The assignment of weights to the joint rota-
tions reflects the fact, that certain joint rotations, specifically
those attached closer to the torso, have a greater effect on the
pose than others. This can be easily perceived by an example:
if we consider the movement of an arm that is being raised,
the movement of the upper arm is more important to the over-
all pose than the movement of the hand. This assumption is,
of course, application-dependent and may not hold for partic-
ular activity vocabularies. However, for everyday activities,
such as the ones being of interest to this work, the assumption
is in general valid. The above distance function takes values
in the interval [0, 1]. Note, that, the information for the root
translation (tr) and absolute root rotation (Rr) is not used in
the distance function.

The distances between all pairs of poses in the two se-
quences X,Y are calculated by utilizing (2) and subsequently
used to construct a correspondence matrix of dimensionality
MxN , denoted by C. The rows / columns of C correspond
to poses of sequence X / Y respectively. For each pose Xi of
X, the nearest pose Yj of Y is found and the element (i, j)
of C is set to one, whereas all other elements (i, k), k 6= j of
the i-th row are set to zero.

The result of this process is, that C exhibits distinct pat-
terns depending on the similarity between the two sequences
under examination. When the two sequences compared de-
scribe movements of the same class (e.g. two walking se-
quences), the correspondence matrix contains diagonal seg-
ments of ones, of various lengths, either continuous or inter-
rupted, since successive poses from one sequence are in gen-
eral most similar to successive poses from the other. Specif-
ically, these diagonal segments extend from the upper left to
the bottom right of the matrix. When two sequences describe

movements from different classes, the similarity matrix ex-
hibits different structures, with two general characteristics:
First, there may exist long vertical lines, implying that many
poses in sequence X are matched to the same pose in Y. This
is often the case, when the two movements described in the
sequences are different, but share one or more similar poses.
Second, the correspondence matrix may exhibit diagonal seg-
ments of limited length or the ones (units) may be arranged
with no particular structure, a fact indicating, that the two se-
quences describe completely different movements. Examples
of correspondence matrices are shown in Fig. 2, where the
unit entries are represented by white pixels.

2.2. Similarity Score Evaluation

The similarity between two skeleton motion sequences X,Y,
is determined by means of a score S, calculated over their cor-
respondence matrix C. The calculation of S is based on the
existence and the structure of diagonal segments in the corre-
spondence matrix, and the higher its value, the more similar
the two sequences are.

For each row of matrix C (which corresponds to a pose of
sequence X), the position of the unit entry (column index) is
retrieved, in order to determine the relative position of the unit
entries in subsequent poses and to identify possible diagonal
segments. The relative position of a unit in the next row with
respect to the unit in the current row defines whether the next
unit lies in a ”legal” position or not, according to a number
of rules. These rules try to take into account the fact that, al-
though units (matching poses) should ideally form a diagonal
(45◦ slope) segment consisting of connected elements (i.e.
units should be arranged in matrix cells (i, j), (i + 1, j + 1),
(i + 2, j + 2) and so on), deviations from this ideal situa-
tion (i.e. gaps of limited extend) should be allowed. More
specifically, a maximum of three consecutive points within a
diagonal segment are allowed to lie in a vertical placement,
such as (i, j),(i+1, j),(i+2, j). This means, that up to three
consecutive poses of sequence X are allowed to be matched



Table 1. Legal (marked with a tick) and illegal (marked with
an x) positions for a unit entry in the correspondence matrix.

1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
x
√ √ √ √

x

to the same pose of sequence Y. Furthermore, if the current
unit is at cell (i, j), then the unit in the next row can be either
in the ”ideal” position (i+1, j +1), or in positions (i+1, j)
(vertical placement), (i + 1, j + 2), (i + 1, j + 3). In other
words, gaps of length 1 and 2 are allowed. Finally, the length
of each diagonal segment, that is the number of units lying
on it, should be larger than a threshold Tl, in order for it to
contribute to the final score. The optimal value for Tl is de-
termined by testing various values and selecting the one that
achieves the highest recognition rate. It was observed that,
a minimum length of 5 points produced the best results. An
example of legal and illegal positions for a unit entry in the
4-th row of a correspondence matrix, given the arrangement
of units in the previous 3 rows, is shown in Table 1.

After the aforementioned process has been performed for
every pose of sequence Xs, all the units lying in ”legal” po-
sitions, have been assigned to a diagonal segment. Each unit
entry to the correspondence matrix lying in a diagonal seg-
ment, is assigned a weight αi,j . A weight equal 1 is assigned
if consecutive poses of sequence X are matched to exactly
consecutive poses in sequence Y, (i.e. units are in an arrange-
ment (i, j), (i+1, j+1)) and a weight equal to 0.8 otherwise,
so as to penalise ”imperfect” diagonal segments.

At the end of the procedure, the segments containing a
number of points below threshold Tl are discarded as invalid,
while the valid segments contribute to the calculation of the
total score. The total score S is estimated by summing the
weights of the units lying in valid diagonal segments:

S =
∑

(i,j)∈V

αi,j , (3)

where V is the set of all units lying in valid diagonal seg-
ments.

The classification of a test sequence is performed using
an 1-Nearest Neighbor classifier: the test sequence is tested
against all training sequences and is labeled with the activity
label of the training sequence that yielded the highest similar-
ity score.

3. EXPERIMENTAL RESULTS

In our experiments we used data from the HDM05 motion
capture database [13], which consists of files in ASF/AMC

format, for various types of activities, performed by five ac-
tors. Our activity recognition task included 18 classes of ac-
tivities: cartwheel, clap, clap above head, elbow to knee, hop
both legs, hop left, hop right, kick right front, kick right side,
kick left front, kick left side, punch right front, punch right
side, punch left front, punch left side, run on place, sneak
and walk. Data from all five actors were used, 1013 motion
capture files in total. From the motion capture clips, we se-
lected the angles information for a subset of 13 joints, namely
lower back, upper back, thorax, right humerus, right radius,
left humerus, left radius, right femur, right foot, left femur,
left tibia, left foot and right tibia, since these joints were ob-
served to be the most informative, and therefore more dis-
criminant for our recognition task. The weightswb used in the
quaternion-based distance function were calculated empiri-
cally and assigned to each joint according to its position in the
skeletal hierarchy. Upper back, thorax, humerus and femur
were each assigned a weight of 0.1, radius, tibia and lower
back a weight of 0.065, while feet were assigned a weight of
0.0375. A 1-NN classifier was adopted and the classification
experiment was performed in a leave-one-out setting, com-
monly used in the experimental evaluation of activity recogni-
tion methods. In more detail, each skeleton motion sequence
was tested against all other sequences in the database and was
labeled according to the label of the sequence that yielded the
biggest similarity score. This procedure was repeated for all
sequences of the dataset and the overall correct recognition
rate was calculated.

The aforementioned classification experiment resulted
in a correct recognition rate of 99.5%, which outperforms
the IsoCCA method described in [5]. From the total of 18
classes, 13 yielded 100% recognition rate, while 5 classes
yielded rates between 96.43% and 97.77%. For our dataset,
the IsoCCA algorithm achieved a recognition rate of 94.97%.

4. CONCLUSIONS AND FUTURE WORK

A method for activity recognition on skeleton motion data
has been presented in this paper. Our algorithm is based on
the structure of a correspondence matrix between motion se-
quences and achieves a 99.5% recognition rate for a dataset
including 18 different classes from the HDM05 database. Re-
garding future work, additional features, such as the velocity
and acceleration of joints could be explored. Other research
directions that will be investigated include testing the algo-
rithm to datasets other than the HDM05, incorporation of
our method in a continuous activity recognition framework,
and extending the method towards recognizing dance actions
depicted in skeleton motion sequences.
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